login
A250621
a(n) = floor(n*log(prime(n))).
2
0, 2, 4, 7, 11, 15, 19, 23, 28, 33, 37, 43, 48, 52, 57, 63, 69, 73, 79, 85, 90, 96, 101, 107, 114, 119, 125, 130, 136, 141, 150, 156, 162, 167, 175, 180, 187, 193, 199, 206, 212, 218, 225, 231, 237, 243, 251, 259, 265, 271, 278, 284, 290, 298, 305, 312, 318, 324, 331
OFFSET
1,2
COMMENTS
From n < prime(n), n >= 1 follows that n*log(n) < prime(n) < n*log(prime(n)), n >= 4. This inequality is included in the prime number theorem PNT.
EXAMPLE
For n = 1, prime(1) = 2, floor(1*0.69... = 0.69...) = 0 ;
For n = 25, prime(25) = 97, floor(25*4.57... = 114.36...) = 114.
MATHEMATICA
Table[Floor[n Log[Prime[n]]], {n, 60}] (* Harvey P. Dale, Aug 13 2019 *)
PROG
(PARI) vector(100, n, floor(n*log(prime(n)))) \\ Derek Orr, Nov 28 2014
CROSSREFS
Cf. A050504 (floor(n*log(n))), A086861 (floor(prime(n)/log(prime(n)))), A085581 (floor(prime(n)/log(n))), A050504 (integer part of n*log(n)), A050503 (nearest integer to n*log(n)), A050502 (ceiling of n*log(n)).
Sequence in context: A280742 A087163 A062467 * A003068 A194168 A347763
KEYWORD
nonn,easy
AUTHOR
Freimut Marschner, Nov 26 2014
STATUS
approved