%I #4 Nov 19 2014 16:39:08
%S 714,39471,584904,4530981,23761098,95876627,320301600,927689769,
%T 2402475802,5685632535,12493324680,25797289869,50524534074,
%U 94547403963,170050397312,295377297873,497481476778,815123592319,1302984547464
%N Number of length 5+6 0..n arrays with every seven consecutive terms having the maximum of some three terms equal to the minimum of the remaining four terms
%C Row 5 of A250373
%H R. H. Hardin, <a href="/A250378/b250378.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/35)*n^10 + (85/42)*n^9 + (317/14)*n^8 + (635/7)*n^7 + (1821/10)*n^6 + (6353/30)*n^5 + (956/7)*n^4 + (253/7)*n^3 + (513/35)*n^2 + (1717/105)*n + 1
%e Some solutions for n=2
%e ..1....2....0....1....0....1....0....0....1....1....2....0....1....1....2....1
%e ..1....1....1....2....0....1....1....2....1....1....0....0....2....1....1....1
%e ..1....2....0....2....0....2....1....2....2....2....2....2....1....2....1....0
%e ..1....2....0....1....2....1....2....1....2....1....0....1....2....2....0....1
%e ..1....1....0....1....0....2....0....1....0....1....0....2....1....1....2....1
%e ..2....0....1....1....1....2....2....1....1....0....0....1....0....0....1....2
%e ..1....1....0....2....2....1....2....1....1....2....0....2....2....1....1....2
%e ..1....2....2....0....0....1....0....0....1....0....0....1....1....1....2....1
%e ..0....1....2....1....0....0....1....2....1....2....0....0....1....1....2....0
%e ..2....2....0....2....0....1....1....0....0....1....1....0....2....2....0....1
%e ..1....2....0....0....0....0....1....2....2....1....0....1....1....2....1....0
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 19 2014
