%I
%S 44,68,108,172,272,424,648,996,1544,2404,3746,5830,9048,14024,21746,
%T 33754,52426,81432,126454,196308,304706,472986,734300,1140068,1770064,
%U 2748096,4266370,6623360,10282584,15963684,24783794,38477102,59735816
%N Number of length n+5 0..1 arrays with every six consecutive terms having the maximum of some three terms equal to the minimum of the remaining three terms.
%H R. H. Hardin, <a href="/A250329/b250329.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n1) + a(n3) + 2*a(n6)  2*a(n9)  a(n10)  a(n12) + a(n15).
%F Empirical g.f.: 2*x*(22 + 12*x + 20*x^2 + 10*x^3 + 16*x^4 + 22*x^5  18*x^6  30*x^7  46*x^8  22*x^9  9*x^10  12*x^11 + 7*x^12 + 11*x^13 + 16*x^14) / ((1  x)*(1 + x + x^2)*(1  x  x^4  2*x^6  x^7 + x^12)).  _Colin Barker_, Nov 12 2018
%e Some solutions for n=6:
%e ..1....0....0....0....0....1....0....1....1....1....1....1....1....0....1....1
%e ..0....1....1....1....0....0....1....0....1....1....0....0....1....0....1....0
%e ..1....1....1....1....1....1....1....1....0....1....1....0....1....0....0....0
%e ..1....0....1....1....1....1....1....1....1....0....1....1....1....0....0....0
%e ..1....0....0....0....0....1....1....1....1....0....1....1....1....0....0....1
%e ..1....0....1....1....0....1....1....1....1....1....1....1....1....0....0....0
%e ..1....0....1....1....0....0....0....1....0....1....0....1....0....1....1....0
%e ..1....0....1....0....0....1....1....1....1....1....1....1....1....0....0....0
%e ..1....0....1....1....1....0....0....0....0....1....1....0....1....1....0....0
%e ..1....1....1....1....0....1....1....0....1....1....1....1....1....0....0....0
%e ..0....0....1....0....0....1....1....1....1....1....0....0....0....0....0....1
%Y Column 1 of A250336.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 19 2014
