%I #18 Dec 05 2016 09:58:04
%S 0,0,0,0,0,0,0,0,1,1,3,5,10,15,30,44,78,119,202,310,513,786,1277,1977,
%T 3168,4916,7831,12199,19332,30208,47756,74808,118124,185415,292673,
%U 460270,726598,1144499,1807638,2851356,4506370,7117298,11256870,17799183,28173716
%N Number of orbits of size 2n in vertex graph of Lucas cube Lambda_n.
%H Lars Blomberg, <a href="/A250115/b250115.txt">Table of n, a(n) for n = 1..1000</a>
%H A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar and M. Petkovsek, <a href="http://www.fmf.uni-lj.si/~klavzar/preprints/Fib-Luc-orbits-submit-2014.pdf">Vertex and edge orbits of Fibonacci and Lucas cubes</a>, 2014; See Table 4.
%H A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, et al., <a href="http://www.fmf.uni-lj.si/~klavzar/preprints/Fib-Luc-orbits-August-11-2014.pdf">Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings</a>, 2014.
%Y Cf. A129526, A250114.
%K nonn
%O 1,11
%A _N. J. A. Sloane_, Nov 19 2014
%E More terms from _Lars Blomberg_, Dec 05 2016
|