login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250008
Number of length n+5 0..2 arrays with no six consecutive terms having the maximum of any three terms equal to the minimum of the remaining three terms
1
300, 520, 912, 1612, 2864, 5102, 9090, 16272, 29158, 52262, 93688, 167964, 301168, 539974, 968642, 1737844, 3117714, 5593386, 10036076, 18005100, 32306350, 57972016, 104024782, 186662190, 334963334, 601062696, 1078577866, 1935527752
OFFSET
1,1
COMMENTS
Column 2 of A250014
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-2) +a(n-4) -a(n-5) +22*a(n-6) -13*a(n-7) -27*a(n-8) -3*a(n-9) -24*a(n-10) +18*a(n-11) -162*a(n-12) +30*a(n-13) +223*a(n-14) +24*a(n-15) +211*a(n-16) -102*a(n-17) +323*a(n-18) +231*a(n-19) -610*a(n-20) +29*a(n-21) -645*a(n-22) +195*a(n-23) +585*a(n-24) -1099*a(n-25) +329*a(n-26) -622*a(n-27) +20*a(n-28) +143*a(n-29) -1010*a(n-30) +864*a(n-31) -339*a(n-32) +678*a(n-33) +39*a(n-34) -2*a(n-35) -84*a(n-36) -358*a(n-37) +539*a(n-38) +106*a(n-39) +81*a(n-40) -113*a(n-41) +71*a(n-42) +190*a(n-43) -97*a(n-44) -83*a(n-45) -5*a(n-46) -46*a(n-47) +65*a(n-48) -28*a(n-49) +12*a(n-50) -18*a(n-51) -12*a(n-54) -8*a(n-55)
EXAMPLE
Some solutions for n=6
..2....1....1....0....2....1....2....0....0....2....0....1....0....1....2....1
..2....0....0....1....2....0....0....0....0....2....2....1....2....2....0....0
..0....1....1....2....0....0....1....2....0....0....0....2....2....2....2....0
..0....0....0....2....0....2....0....1....1....0....0....2....1....1....0....0
..0....2....0....0....0....1....0....1....1....1....1....0....1....0....2....2
..1....0....2....0....2....0....2....0....1....2....2....2....2....2....1....1
..2....2....1....0....2....2....2....0....0....2....0....0....1....0....0....2
..2....2....0....1....1....2....0....0....0....0....2....1....2....2....0....2
..0....0....1....2....2....0....1....2....0....2....0....0....2....2....2....0
..2....1....0....1....1....2....2....2....1....1....0....1....1....1....0....0
..0....2....0....0....1....1....0....1....2....0....2....0....0....0....1....2
CROSSREFS
Sequence in context: A096511 A116346 A102509 * A332282 A190879 A375384
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 10 2014
STATUS
approved