login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle read by rows: T(n,k) is the number of Abelian groups of order A025487(n) with k invariant factors (2 <= n, 1 <= k).
4

%I #25 Dec 29 2018 13:02:10

%S 1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,2,1,1,1,3,1,2,1,1,1,1,1,3,3,2,

%T 1,1,1,3,2,1,2,2,1,1,1,1,1,1,3,4,3,2,1,1,1,5,2,2,1,3,1,3,3,2,1,1,1,1,

%U 3,5,1,2

%N Irregular triangle read by rows: T(n,k) is the number of Abelian groups of order A025487(n) with k invariant factors (2 <= n, 1 <= k).

%C The length of n-th row is A051282(n).

%C Signatures differing only by a (trailing) list of ones give identical rows.

%H Álvar Ibeas, <a href="/A249771/b249771.txt">Rows n=2..1075, flattened</a>

%F T(n,1) = 1. If k > 1 and the prime signature is (e_1,...,e_s), T(n,k) = Sum(Product(A008284(e_i,k), i in I) * Product(A026820(e_i,k-1), i not in I)), where the sum is taken over nonempty subsets I of {1,...,s}.

%F T(n,k) = A249770(A025487(n),k).

%F T(n,1) + T(n,2) = A052304(n).

%e First rows:

%e 1;

%e 1,1;

%e 1;

%e 1,1,1;

%e 1,1;

%e 1,2,1,1;

%e 1,1,1;

%e 1;

%e 1,2,2,1,1;

%e 1,3;

%e ...

%Y Refinement of A050360. Last row elements: A249773. Cf. A249770, A052304.

%K nonn,tabf

%O 2,11

%A _Álvar Ibeas_, Nov 06 2014