login
Decimal expansion of Integral_{0..1} Li_2(x)^2 dx, where Li_2 is the dilogarithm function.
1

%I #18 Apr 25 2021 01:37:42

%S 6,0,7,7,1,2,3,3,7,9,4,3,0,1,5,4,6,4,2,4,6,2,2,6,2,6,2,0,1,5,0,6,9,4,

%T 1,5,4,3,9,0,3,2,4,0,8,0,2,1,2,2,4,8,6,6,5,6,7,2,3,7,8,5,8,5,0,2,9,3,

%U 3,7,7,6,5,1,5,7,6,8,0,0,7,9,7,9,1,9,2,7,9,4,1,7,7,3,9,1,3,4,9,8,8,9,6,7,1,7

%N Decimal expansion of Integral_{0..1} Li_2(x)^2 dx, where Li_2 is the dilogarithm function.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/Dilogarithm.html">Dilogarithm</a>

%F 6 - 2*zeta(2) - 4*zeta(3) + zeta(2)^2.

%e 0.607712337943015464246226262015069415439032408...

%t RealDigits[6 - 2*Zeta[2] - 4*Zeta[3] + Zeta[2]^2, 10, 106] // First

%t NIntegrate[PolyLog[2,x]^2,{x,0,1},WorkingPrecision->110] (* _Vaclav Kotesovec_, Nov 03 2014 *)

%o (Python)

%o from mpmath import *

%o mp.dps=107

%o f=lambda x: polylog(2, x)**2

%o I=quad(f, [0, 1])

%o print([int(n) for n in list(str(I)[2:-1])]) # _Indranil Ghosh_, Jul 04 2017

%Y Cf. A002117, A013661, A249649.

%K nonn,cons,easy

%O 0,1

%A _Jean-François Alcover_, Nov 03 2014