

A249430


a(n) = Least integer k such that A249431(k) = n, and 1 if no such integer exists.


5



1, 0, 350, 439, 174, 713, 323, 1923, 1052, 999, 1766, 3749, 2254, 2253, 1934, 3391
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

a(n) = the least natural number k such that {product of elements on row k of Pascal's triangle} is divisible by (k+n)! but not by (k+n+1)!
Note: a(18) = 3144 and a(24) = 2974. First values k for which A249431(k) = 16 and 17, if they exist, are larger than 4096.


LINKS

Table of n, a(n) for n=0..15.


PROG

(Scheme) (define (A249430 n) (let loop ((k 0)) (cond ((= n (A249431 k)) k) (else (loop (+ 1 k))))))


CROSSREFS

Nonnegative terms are all members of A249434.
Cf. A000142, A001142, A007318, A249151, A249431, A249432.
Sequence in context: A285463 A138944 A043619 * A260763 A109761 A109762
Adjacent sequences: A249427 A249428 A249429 * A249431 A249432 A249433


KEYWORD

nonn,more


AUTHOR

Antti Karttunen, Nov 02 2014


STATUS

approved



