Ornstein-Uhlenbeck Process

Steven Finch

May 15, 2004
We first define several words. A stochastic process $\left\{Y_{t}: t \geq 0\right\}$ is

- stationary if, for all $t_{1}<t_{2}<\ldots<t_{n}$ and $h>0$, the random n-vectors $\left(Y_{t_{1}}, Y_{t_{2}}, \ldots, Y_{t_{n}}\right)$ and $\left(Y_{t_{1}+h}, Y_{t_{2}+h}, \ldots, Y_{t_{n}+h}\right)$ are identically distributed; that is, time shifts leave joint probabilities unchanged
- Gaussian if, for all $t_{1}<t_{2}<\ldots<t_{n}$, the n-vector $\left(Y_{t_{1}}, Y_{t_{2}}, \ldots, Y_{t_{n}}\right)$ is multivariate normally distributed
- Markovian if, for all $t_{1}<t_{2}<\ldots<t_{n}, \mathrm{P}\left(Y_{t_{n}} \leq y \mid Y_{t_{1}}, Y_{t_{2}}, \ldots, Y_{t_{n-1}}\right)=$ $\mathrm{P}\left(Y_{t_{n}} \leq y \mid Y_{t_{n-1}}\right)$; that is, the future is determined only by the present and not the past.

Also, a process $\left\{Y_{t}: t \geq 0\right\}$ is said to have independent increments if, for all $t_{0}<t_{1}<\ldots<t_{n}$, the n random variables $Y_{t_{1}}-Y_{t_{0}}, Y_{t_{2}}-Y_{t_{1}}, \ldots, Y_{t_{n}}-Y_{t_{n-1}}$ are independent. This condition implies that $\left\{Y_{t}: t \geq 0\right\}$ is Markovian, but not conversely. The increments are further said to be stationary if, for any $t>s$ and $h>0$, the distribution of $Y_{t+h}-Y_{s+h}$ is the same as the distribution of $Y_{t}-Y_{s}$. This additional provision is needed for the following definition.

A stochastic process $\left\{W_{t}: t \geq 0\right\}$ is a Wiener-Lévy process or Brownian motion if it has stationary independent increments, if W_{t} is normally distributed and $\mathrm{E}\left(W_{t}\right)=0$ for each $t>0$, and if $W_{0}=0$. It follows immediately that $\left\{W_{t}: t>0\right\}$ is Gaussian and that $\operatorname{Cov}\left(W_{s}, W_{t}\right)=\theta^{2} \min \{s, t\}$, where the variance parameter θ^{2} is a positive constant. For concreteness' sake, we henceforth assume that $\theta=1$. Almost all sample paths of Brownian motion are everywhere continuous but nowhere differentiable.

One technical stipulation is required for the following. A stochastic process $\left\{Y_{t}\right.$: $t \geq 0\}$ is continuous in probability if, for all $u \in \mathbb{R}^{+}$and $\varepsilon>0, \mathrm{P}\left(\left|Y_{v}-Y_{u}\right| \geq \varepsilon\right) \rightarrow$ 0 as $v \rightarrow u$. This holds if $\operatorname{Cov}\left(Y_{s}, Y_{t}\right)$ is continuous over $\mathbb{R}^{+} \times \mathbb{R}^{+}$. Note that this is a statement about distributions, not sample paths.

Having dispensed with preliminaries, we turn to the central topic. A stochastic process $\left\{X_{t}: t \geq 0\right\}$ is an Ornstein-Uhlenbeck process or a Gauss-Markov

[^0]process if it is stationary, Gaussian, Markovian, and continuous in probability [1, 2]. A fundamental theorem, due to Doob $[3,4,5]$, ensures that $\left\{X_{t}: t \geq 0\right\}$ necessarily satisfies the following linear stochastic differential equation:
$$
d X_{t}=-\rho\left(X_{t}-\mu\right) d t+\sigma d W_{t}
$$
where $\left\{W_{t}: t \geq 0\right\}$ is Brownian motion with unit variance parameter and μ, ρ, σ are constants. We have moments
$$
\mathrm{E}\left(X_{t}\right)=\mu, \quad \operatorname{Cov}\left(X_{s}, X_{t}\right)=\frac{\sigma^{2}}{2 \rho} e^{-\rho|s-t|}
$$
in the unconditional (strictly stationary) case and
\[

$$
\begin{aligned}
\mathrm{E}\left(X_{t} \mid X_{0}=c\right) & =\mu+(c-\mu) e^{-\rho t} \\
\operatorname{Cov}\left(X_{s}, X_{t} \mid X_{0}=c\right) & =\frac{\sigma^{2}}{2 \rho}\left(e^{-\rho|s-t|}-e^{-\rho(s+t)}\right)
\end{aligned}
$$
\]

in the conditional (asymptotically stationary) case, where X_{0} is initially constant. The latter case encompasses Brownian motion when $\mu=c=0, \sigma=1$ and $\rho \rightarrow 0^{+}$. The former case encompasses idealized white noise $\left\{d W_{t} / d t: t \geq 0\right\}$ when $\mu=0$, $\sigma=\rho$ and $\rho \rightarrow \infty$.

Before proceeding, we note the following simple algorithm for generating a sample path of the Ornstein-Uhlenbeck process (also known as colored noise) over the time interval $[0, T]$. Let N be a large integer and let $z_{0}, z_{1}, \ldots, z_{N}$ be independent random numbers generated from a normal distribution with mean 0 and variance $\sigma^{2} /(2 \rho)$. Define $x_{0}=\mu+z_{0}$ for the unconditional case and $x_{0}=c$ for the conditional case. Then define recursively

$$
x_{n}=\mu+\kappa_{N}\left(x_{n-1}-\mu\right)+\sqrt{1-\kappa_{N}^{2}} z_{n}
$$

for $1 \leq n \leq N$, where $\kappa_{N}=\exp (-\rho T / N)$. The sequence $x_{0}, x_{1}, \ldots, x_{N}$ is called a first-order autoregressive sequence (a discrete analog of the OU process) with lag-one correlation coefficient κ_{N}. Finally, interpolate linearly the values $X(n T / N)=x_{n}$ for $0 \leq n \leq N$ to obtain the desired path $[6,7,8]$. More sophisticated simulation methods are found in [9, 10, 11].

For concreteness' sake, we henceforth assume that $\mu=0, \rho=1$ and $\sigma^{2}=2$. (Some authors take $\sigma^{2}=1$ instead; the decision becomes apparent in any paper by seeing whether $\operatorname{Cov}\left(X_{s}, X_{t}\right)$ is $e^{-|s-t|}$ or $e^{-|s-t|} / 2$.) The conditional probability

$$
\mathrm{P}\left(X_{t} \leq x \mid X_{0}=c\right)=\frac{1}{\sqrt{2 \pi\left(1-e^{-2 t}\right)}} \int_{-\infty}^{x} \exp \left(-\frac{\left(\xi-c e^{-t}\right)^{2}}{2\left(1-e^{-2 t}\right)}\right) d \xi
$$

tends to the standard normal distribution, of course, as $t \rightarrow \infty$ (meaning that transients die out with time and don't affect long-term behavior). Likewise, $\mathrm{P}\left(X_{s} \leq x\right.$ and $X_{t} \leq y \mid X_{0}=c$) can be evaluated. One might believe that the solution of any problem involving the OU process would be similarly straightforward; the following sections serve, however, to eliminate such ideas $[12,13]$.
0.1. First-Passage Times. For $a \in \mathbb{R}$, we wish to find the length of time required for an OU process to cross the level $x=a$, given that it started at $x=c$. Define the first-passage time or hitting time $T_{a, c}$ by $T_{a, c}=\inf \left\{t \geq 0: X_{t}=a \mid X_{0}=c\right\}$. The random variable $T_{a, c}$ is 0 if and only if $a=c$. Let $f_{a, c}(t)$ denote the density function of $T_{a, c}$. In the special case when $a=0$, it is known that $[2,12,14,15]$

$$
f_{0, c}(t)=\sqrt{\frac{2}{\pi}} \frac{|c| e^{-t}}{\left(1-e^{-2 t}\right)^{3 / 2}} \exp \left(-\frac{c^{2} e^{-2 t}}{2\left(1-e^{-2 t}\right)}\right)
$$

but for $a \neq 0$, the formulas for $f_{a, c}(t)$ are more complicated (as we shall soon see). For $a>0$ and $c>0$, Thomas [16] and Ricciardi \& Sato [17, 18] demonstrated that

$$
\begin{gathered}
\mathrm{E}\left(T_{a, 0}\right)=\sqrt{\frac{\pi}{2}} \int_{0}^{a}\left(1+\operatorname{erf}\left(\frac{t}{\sqrt{2}}\right)\right) \exp \left(\frac{t^{2}}{2}\right) d t=\frac{1}{2} \sum_{k=1}^{\infty} \frac{(\sqrt{2} a)^{k}}{k!} \Gamma\left(\frac{k}{2}\right), \\
\mathrm{E}\left(T_{0, c}\right)=\sqrt{\frac{\pi}{2}} \int_{-c}^{0}\left(1+\operatorname{erf}\left(\frac{t}{\sqrt{2}}\right)\right) \exp \left(\frac{t^{2}}{2}\right) d t=\frac{1}{2} \sum_{k=1}^{\infty}(-1)^{k+1} \frac{(\sqrt{2} c)^{k}}{k!} \Gamma\left(\frac{k}{2}\right)
\end{gathered}
$$

and, for example,

$$
\begin{array}{ll}
\mathrm{E}\left(T_{1,0}\right)=2.0934066496 \ldots, & \mathrm{E}\left(T_{0,1}\right)=0.9019080126 \ldots, \\
\mathrm{E}\left(T_{2,0}\right)=10.4284093979 \ldots, & \mathrm{E}\left(T_{0,2}\right)=1.4252045655 \ldots
\end{array}
$$

The asymmetry in going from 0 to x, versus going from x to 0 , is unsurprising: The process has mean 0 , hence it tends to arrive at 0 more often than it departs from 0 . For $a>0$ and $c>0$, we have $[17,18]$

$$
\begin{aligned}
\operatorname{Var}\left(T_{a, 0}\right) & =\sqrt{2 \pi} \int_{0}^{a} \int_{-\infty}^{t} \int_{s}^{a}\left(1+\operatorname{erf}\left(\frac{r}{\sqrt{2}}\right)\right) \exp \left(\frac{r^{2}+t^{2}-s^{2}}{2}\right) d r d s d t-\mathrm{E}\left(T_{a, 0}\right)^{2} \\
& =\mathrm{E}\left(T_{a, 0}\right)^{2}-\frac{1}{2} \sum_{k=1}^{\infty} \frac{(\sqrt{2} a)^{k}}{k!} \Gamma\left(\frac{k}{2}\right) \Psi\left(\frac{k}{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(T_{0, c}\right) & =\sqrt{2 \pi} \int_{-c-\infty}^{0} \int_{s}^{t} \int_{s}^{0}\left(1+\operatorname{erf}\left(\frac{r}{\sqrt{2}}\right)\right) \exp \left(\frac{r^{2}+t^{2}-s^{2}}{2}\right) d r d s d t-\mathrm{E}\left(T_{0, c}\right)^{2} \\
& =\frac{1}{2} \sum_{k=1}^{\infty}(-1)^{k} \frac{(\sqrt{2} c)^{k}}{k!} \Gamma\left(\frac{k}{2}\right) \Psi\left(\frac{k}{2}\right)-\mathrm{E}\left(T_{0, c}\right)^{2}
\end{aligned}
$$

where $\Psi(x)=\psi(x)-\psi(1)$ and $\psi(x)$ is the digamma function [19]. In particular, $\Psi(1)=0$ and

$$
\Psi(x)= \begin{cases}\sum_{j=1}^{x-1} \frac{1}{j} & \text { if } x \text { is an integer }>1 \\ -2 \ln (2)+2 \sum_{j=1}^{x-1 / 2} \frac{1}{2 j-1} & \text { if } x \text { is a half-integer }>0\end{cases}
$$

For example,

$$
\begin{array}{ll}
\operatorname{Var}\left(T_{1,0}\right)=5.8420278024 \ldots, & \operatorname{Var}\left(T_{0,1}\right)=0.8510837032 \ldots, \\
\operatorname{Var}\left(T_{2,0}\right)=105.2752035488 \ldots, & \operatorname{Var}\left(T_{0,2}\right)=1.0669454393 \ldots
\end{array}
$$

To compute $f_{a, c}(t)$ exactly for arbitrary a and c, we would need to invert the following (Laplace transform) identity due to Darling \& Siegert [20, 21, 22, 23]:

$$
\mathrm{E}\left(e^{-\lambda T_{a, c}}\right)=\int_{0}^{\infty} f_{a, c}(t) e^{-\lambda t} d t= \begin{cases}\frac{D_{-\lambda}(-c)}{D_{-\lambda}(-a)} \exp \left(\frac{c^{2}-a^{2}}{4}\right) & \text { if } c<a \\ \frac{D_{-\lambda}(c)}{D_{-\lambda}(a)} \exp \left(\frac{c^{2}-a^{2}}{4}\right) & \text { if } c>a\end{cases}
$$

where $D_{\nu}(x)$ is the parabolic cylinder function or Weber function [24]:

$$
D_{\nu}(x)= \begin{cases}\sqrt{\frac{2}{\pi}} \exp \left(\frac{x^{2}}{4}\right) \int_{0}^{\infty} t^{\nu} \exp \left(-\frac{t^{2}}{2}\right) \cos \left(x t-\frac{\nu \pi}{2}\right) d t & \text { if } \nu>-1 \\ \frac{1}{\Gamma(-\nu)} \exp \left(-\frac{x^{2}}{4}\right) \int_{0}^{\infty} t^{-\nu-1} \exp \left(-\frac{t^{2}}{2}-x t\right) d t & \text { if } \nu<0\end{cases}
$$

The two branches of this formula agree for $-1<\nu<0$. A differential equation

$$
\frac{d^{2} y}{d x^{2}}-\left(\frac{x^{2}}{4}-\nu-\frac{1}{2}\right) y(x)=0
$$

is satisfied by $D_{\nu}(x)$ and, if ν is not an integer, independently by $D_{-\nu}(x)$. A series representation in terms of confluent hypergeometric functions [0.4] is also useful. Unfortunately a closed-form expression for the inverse Laplace transform seems not to be possible; only a numerical approach is feasible at present. Keilson \& Ross [25] tabulated the distribution of $T_{a, c}$ for a number of values a and c. For example, the median time for an OU process X_{t} to reach $a=1$, given that $X_{0}=c=0$, is $1.1892 \ldots$ This corresponds to the $50^{\text {th }}$ percentile of the distribution of $T_{1,0}$. The median of $T_{2,0}$, by contrast, is $7.2521 \ldots$.

We turn to a more complicated problem involving two (absorbing) boundaries rather than just one. Given $a<c<b$, what is the length of time required for the process to escape the interval (a, b), given that it started at $x=c$? Define $T_{a, b, c}=\inf \left\{t \geq 0: X_{t}=a\right.$ or $\left.X_{t}=b \mid X_{0}=c\right\}$ and let $f_{a, b, c}(t)$ denote the density function of $T_{a, b, c}$. Efforts have focused on the scenario in which $-a=b>0$. The Laplace transform of $f_{-b, b, c}(t)$ satisfies [22]

$$
\mathrm{E}\left(e^{-\lambda T_{-b, b, c}}\right)=\frac{D_{-\lambda}(c)+D_{-\lambda}(-c)}{D_{-\lambda}(b)+D_{-\lambda}(-b)} \exp \left(\frac{c^{2}-b^{2}}{4}\right)
$$

assuming $-b<c<b$. From another table in [25], the median of $T_{-1,1,0}$ is found to be $0.4449 \ldots$.... The reason that this is less than $1.1892 \ldots$ is clear: Each direction of travel leads to a potential crossing. The median of $T_{-2,2,0}$ is $3.2439 \ldots$.

Keilson \& Ross' approach to evaluating such probabilities was based on finding zeroes and residues in the complex plane of the parabolic cylinder functions. Alternative approaches for numerically computing $f_{a, c}(t)$ and $f_{-b, b, c}(t)$ include [26, 27, 28, 29]. We report on some related asymptotics in [0.4].

There is an obvious connection between first-passage times and extreme values of a process (in the conditional case). We simply summarize:

$$
\begin{aligned}
& \mathrm{P}\left(\begin{array}{l}
\left.\max _{0 \leq t \leq T} X_{t} \leq a \mid X_{0}=c\right) \\
\mathrm{P}\left(\min _{0 \leq t \leq T} X_{t} \geq a \mid X_{0}=c\right) \\
\text { if } c>a
\end{array}\right\}=\mathrm{P}\left(T_{a, c}>T\right)=1-F_{a, c}(T)
\end{aligned}
$$

and, if $a<c<b$,

$$
\mathrm{P}\left(a \leq \min _{0 \leq t \leq T} X_{t} \leq \max _{0 \leq t \leq T} X_{t} \leq b \mid X_{0}=c\right)=\mathrm{P}\left(T_{a, b, c}>T\right)=1-F_{a, b, c}(T)
$$

where $F_{a, c}(t), F_{a, b, c}(t)$ are the cumulative distribution functions of $T_{a, c}, T_{a, b, c}$. In the special case when $-a=b>0$, the latter formula becomes a statement about
$\max _{0 \leq t \leq T}\left|X_{t}\right|$, given $X_{0}=c$. Also, the range of the process satisfies [22]

$$
\mathrm{P}\left(\max _{0 \leq t \leq T} X_{t}-\min _{0 \leq t \leq T} X_{t} \leq r \mid X_{0}=c\right)=\left.\int_{0}^{r} \int_{c-q}^{c} \frac{\partial^{2}}{\partial a \partial b} F_{a, b, c}(T)\right|_{b=a+q} d a d q
$$

but no one apparently has calculated this probability.
0.2. Historical Maximums. If the condition $X_{0}=c$ is discarded, what then can be said about $\max _{0 \leq t \leq T} X_{t}$ or $\max _{0 \leq t \leq T}\left|X_{t}\right|$? We focus solely on the former expression and write $M_{T}=\max _{0 \leq t \leq T} X_{t}$. It can be shown that [30, 31, 32]

$$
\mathrm{P}\left(M_{T} \leq 0\right)=\frac{1}{\pi} \arcsin \left(e^{-T}\right)
$$

which is a beautiful (but isolated) result. More generally [32],

$$
\int_{0}^{\infty} \mathrm{P}\left(M_{t} \leq y\right) e^{-\lambda t} d t=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} \frac{1}{\lambda}\left(1-\frac{D_{-\lambda}(-x)}{D_{-\lambda}(-y)} \exp \left(\frac{x^{2}-y^{2}}{4}\right)\right) \exp \left(-\frac{x^{2}}{2}\right) d x
$$

for arbitrary y, or

$$
\int_{0}^{\infty} g_{t}(y) e^{-\lambda t} d t=\frac{1}{\sqrt{2 \pi}} \frac{D_{-\lambda-1}(-y)^{2}}{D_{-\lambda}(-y)^{2}} \exp \left(\frac{-y^{2}}{2}\right)
$$

where $g_{t}(y)$ is the density function of M_{t}. For example, the median value of M_{1} is $1.0393 \ldots$ and the median value of M_{10} is $2.2202 \ldots$. It can be inferred from [0.3] that the median of M_{T} is asymptotically $\sqrt{2 \ln (T)}$ as $T \rightarrow \infty$.

An alternative approach for numerically computing $\mathrm{P}\left(M_{t} \leq y\right)$ via the Mellin transform is due to DeLong [33, 34, 35]. We hope to report on this later. An interesting application to computer science, involving the maximum size reached by a dynamic data structure over a long span of time, is described in [36].
0.3. Pickands' Constants. Assume that $\left\{Y_{t}: t \geq 0\right\}$ is a stationary Gaussian process with zero mean, unit variance and covariance function of the form

$$
r(|s-t|)=\operatorname{Cov}\left(Y_{s}, Y_{t}\right)=1-C|s-t|^{\alpha}+o\left(|s-t|^{\alpha}\right)
$$

as $|s-t| \rightarrow 0$, where $0<\alpha \leq 2$ and $C>0$ are constants. Assume further that $r(\tau) \ln (\tau) \rightarrow 0$ as $\tau \rightarrow \infty$. Pickands [37, 38, 39, 40, 41] demonstrated that $M_{T}=$ $\max _{0 \leq t \leq T} Y_{t}$ has the Gumbel limiting distribution [42]

$$
\lim _{T \rightarrow \infty} \mathrm{P}\left(\sqrt{2 \ln (T)}\left(M_{T}-k_{T}\right) \leq x\right)=\exp \left(-e^{-x}\right)
$$

where

$$
k_{T}=\sqrt{2 \ln (T)}+\frac{1}{\sqrt{2 \ln (T)}}\left\{\frac{2-\alpha}{2 \alpha} \ln (\ln (T))+\ln \left((2 \pi)^{-\frac{1}{2}} 2^{\frac{2-\alpha}{2 \alpha}} C^{\frac{1}{\alpha}} H_{\alpha}\right)\right\}
$$

and H_{α} is a positive constant independent of C. It is known that $H_{1}=1$ (corresponding to the OU process) and $H_{2}=1 / \sqrt{\pi}$. No other exact values for H_{α} are known. An alternative characterization of H_{α} is

$$
H_{\alpha}=\lim _{T \rightarrow \infty} \int_{0}^{\infty} \mathrm{P}\left(\tilde{M}_{T}>y\right) e^{y} d y
$$

where $\left\{\tilde{Y}_{t}: t \geq 0\right\}$ is a nonstationary Gaussian process with

$$
\mathrm{E}\left(\tilde{Y}_{t}\right)=-|t|^{\alpha}, \quad \operatorname{Cov}\left(\tilde{Y}_{s}, \tilde{Y}_{t}\right)=|s|^{\alpha}+|t|^{\alpha}-|s-t|^{\alpha}
$$

but this does not seem to help. Shao [43] and Debicki, Michna \& Rolski [44] gave bounds on H_{α}; for example,

$$
0.009 \leq H_{1 / 2} \leq 715.94, \quad 0.208 \leq H_{3 / 2} \leq 3.04
$$

A conjecture that $H_{\alpha}=1 / \Gamma(1 / \alpha)$ remains unproved. There is also a connection with the Gaussian correlation conjecture and with estimating small ball probabilities [45], topics which we hope to address later.
0.4. Upper Tail Asymptotics. We revisit the single-boundary first-passage time distribution and ask about the limiting value

$$
\lambda(a)=\lim _{t \rightarrow \infty} \frac{1}{t} \ln \left\{\mathrm{P}\left(T_{a, 0}>t\right)\right\}
$$

as a function of $a>0$. In words, what can be said about the upper tail of the distribution of the first hitting time $T_{a, 0}$ for an OU process X_{t} across the level $x=a$, given that $X_{0}=0$? Mandl [46, 47] and Beekman [48] demonstrated that $-1<\lambda(a)<$ 0 and that $\lambda(a)$ is the zero of $D_{-\lambda}(-a)$ closest to 0 . Sample values include [17, 49, 50]

$$
\begin{gathered}
\lim _{a \rightarrow 0^{+}} \lambda(a)=-1, \quad \lim _{a \rightarrow \infty} \lambda(a) \cdot \frac{\exp \left(a^{2} / 2\right)}{a}=\frac{-1}{\sqrt{2 \pi}} \\
\lambda(0.7649508673 \ldots)=-\frac{1}{2} \\
\lambda(1)=-0.3882382947 \ldots=2(-0.1941191473 \ldots) \\
\lambda(2)=-0.0972745958 \ldots=2(-0.0486372979 \ldots)
\end{gathered}
$$

For the symmetric double-boundary first-passage time distribution, we examine

$$
\lambda(-b, b)=\lim _{t \rightarrow \infty} \frac{1}{t} \ln \left\{\mathrm{P}\left(T_{-b, b, 0}>t\right)\right\}
$$

as a function of $b>0$. Breiman [51] proved that $-\infty<\lambda(-b, b)<0$ and that $\lambda(-b, b)$ is the zero of $\Phi\left(\lambda / 2,1 / 2, b^{2} / 2\right)$ closest to 0 , where

$$
\Phi(u, v, w)=1+\sum_{k=1}^{\infty} \frac{u(u+1)(u+2) \cdots(u+k-1)}{v(v+1)(v+2) \cdots(v+k-1)} \frac{w^{k}}{k!}
$$

is the confluent hypergeometric function of the first kind. For simplicity, define $\mu(b)=\lambda(-b, b)$. Sample values include [50, 51, 52]

$$
\begin{gathered}
\lim _{b \rightarrow 0^{+}} \mu(b)=-\infty, \quad \lim _{b \rightarrow \infty} \mu(b) \cdot \frac{\exp \left(b^{2} / 2\right)}{b}=\frac{-1}{\sqrt{2 \pi}}, \\
\mu(1)=-2, \quad \mu(1.3069297277 \ldots)=-1, \quad \mu(1.6438001904 \ldots)=-\frac{1}{2}, \\
\mu(\sqrt{3-\sqrt{6}})=\mu(0.7419637843 \ldots)=-4, \\
\mu(2)=-0.2429928807 \ldots, \quad \mu(3)=-0.0239463006 \ldots, \\
\mu(\sqrt{2})=-0.7984598320 \ldots, \quad \mu(2 \sqrt{2})=-0.0374612092 \ldots
\end{gathered}
$$

The latter two values come from [52], where a different time scaling was chosen. Also, the constant $\left(3-6^{1 / 2}\right)^{1 / 2}$ appears in $[53,54,55]$ with regard to stopping rules in statistical sequential analysis.

For completeness' sake, here is the expression for $D_{-\lambda}(x)$ in terms of confluent hypergeometric functions:
$D_{-\lambda}(x)=\frac{\sqrt{\pi} 2^{-\lambda / 2}}{\Gamma((1+\lambda) / 2)} e^{-x^{2} / 4} \Phi\left(\frac{\lambda}{2}, \frac{1}{2}, \frac{x^{2}}{2}\right)-2 \frac{\sqrt{\pi} 2^{-(1+\lambda) / 2}}{\Gamma(\lambda / 2)} x e^{-x^{2} / 4} \Phi\left(\frac{1+\lambda}{2}, \frac{3}{2}, \frac{x^{2}}{2}\right)$
which gives rise to the values $\lambda(1), \lambda(2)$ and $\lambda^{-1}(-1 / 2)$ listed earlier. The constant $\mu^{-1}(-1)$ is important in the study of sample path behavior of Brownian motion [50, $56,57]$ and first appeared in [54], as far as is known. Some higher dimensional results are given in $[50,58]$. Csáki $[59,60]$ recently outlined the distributional asymptotics of the maximum M_{T}, but we cannot discuss this topic further.
0.5. Addendum. New numerical transform inversion algorithms [61, 62, 63] make enhancement of the tables in $[25,32]$ possible. Also, the distribution of the L_{2}-norm of X_{t} on $[0, T]$ can be inferred from closed-form expressions in [64, 65]. We wonder about corresponding results for L_{1} and L_{∞}-norms. The conjectured formula for H_{α} in terms of the gamma function is probably false [66,67, 68, 69]; simulation-based point estimates $H_{3 / 2} \approx 0.77$ and confidence bounds $0.768 \leq H_{3 / 2} \leq 0.786$ do not carry over well to $H_{1 / 2}$ since the underlying algorithm becomes unreliable for $0<\alpha<1$.

References

[1] G. E. Uhlenbeck and L. S. Ornstein, On the theory of Brownian motion, Phys. Rev. 36 (1930) 823-841.
[2] M. C. Wang and G. E. Uhlenbeck, On the theory of Brownian motion. II, Rev. Modern Phys. 17 (1945) 323-342; MR0013266 (7,130e).
[3] J. L. Doob, The Brownian movement and stochastic equations, Annals of Math. 43 (1942) 351-369; also in Selected Papers on Noise and Stochastic Processes, ed. N. Wax, Dover, 1954, pp. 319-337; MR0006634 (4,17d).
[4] L. Breiman, Probability, Addison-Wesley, 1968, pp. 347-351; MR0229267 (37 \#4841).
[5] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag, 1988, p. 358; MR1121940 (92h:60127).
[6] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, $2^{\text {nd }}$ ed., Wiley, 1971, pp. 96-99, 335-337; MR0270403 (42 \#5292).
[7] I. I. Gringorten, Estimating finite-time maxima and minima of a stationary Gaussian Ornstein-Uhlenbeck process by Monte Carlo simulation, J. Amer. Statist. Assoc. 63 (1968) 1517-1521.
[8] L. Bartosch, Generation of colored noise, Int. J. Mod. Phys. C 12 (2001) 851855.
[9] R. L. Honeycutt, Stochastic Runge-Kutta algorithms. I, White noise, Phys. Rev. A 45 (1992) 600-603; II, Colored noise, Phys. Rev. A 45 (1992) 604-610.
[10] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, 1992; MR1214374 (94b:60069) and MR1260431 (95a:60084).
[11] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev. 43 (2001) 525-546; MR1872387 (2002j:65008).
[12] I. F. Blake and W. C. Lindsey, Level-crossing problems for random processes, IEEE Trans. Inform. Theory IT-19 (1973) 295-315; MR0370729 (51 \#6955).
[13] J. Abrahams, A survey of recent progress on level-crossing problems for random processes, Communications and Networks: A Survey of Recent Advances, ed. I. F. Blake and H. V. Poor, Springer-Verlag, 1986, pp. 6-25.
[14] A. Göing-Jaeschke and M. Yor, A clarification note about hitting times densities for Ornstein-Uhlenbeck processes, Finance Stochast. 7 (2003) 413-415.
[15] L. Alili, P. Patie and J. L. Pedersen, Representations of the first hitting time density of an Ornstein-Uhlenbeck process, Stoch. Models 21 (2005) 967-980; MR2179308 (2006i:60111); http://www.math.ku.dk/~jesper/research/denou.html.
[16] M. U. Thomas, Some mean first-passage time approximations for the OrnsteinUhlenbeck process, J. Appl. Probab. 12 (1975) 600-604; MR0388558 (52 \#9394).
[17] S. Sato, Evaluation of the first-passage time probability to a square root boundary for the Wiener process, J. Appl. Probab. 14 (1977) 850-856; MR0471056 (57 \#10797).
[18] L. M. Ricciardi and S. Sato, First-passage-time density and moments of the Ornstein-Uhlenbeck process, J. Appl. Probab. 25 (1988) 43-57; MR0929503 (89b:60189).
[19] S. R. Finch, Euler-Mascheroni constant, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 28-40.
[20] A. J. F. Siegert, On the first passage time probability problem, Phys. Rev. 81 (1951) 617-623; MR0054192 (14,887b).
[21] R. Bellman and T. Harris, Recurrence times for the Ehrenfest model, Pacific J. Math. 1 (1951) 179-193; MR0045323 (13,566b).
[22] D. A. Darling and A. J. F. Siegert, The first passage problem for a continuous Markov process, Annals of Math. Statist. 24 (1953) 624-639; MR0058908 $(15,449 f)$.
[23] J. A. Beekman, Gaussian-Markov processes and a boundary value problem, Trans. Amer. Math. Soc. 126 (1967) 29-42; MR0203793 (34 \#3641).
[24] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, v. II, based on notes left by H. Bateman, McGraw-Hill, 1953, pp. 116-126; MR0058756 (15,419i).
[25] J. Keilson and H. F. Ross, Passage time distributions for Gaussian Markov (Ornstein-Uhlenbeck) statistical processes, Selected Tables in Mathematical Statistics, v. III, Amer. Math. Soc., 1975, pp. 233-327; MR0408175 (53 \#11941).
[26] C. Park and F. J. Schuurmann, Evaluations of absorption probabilities for the Wiener process on large intervals, J. Appl. Probab. 17 (1980) 363-372; MR0568947 (81f:60111).
[27] K. Pötzelberger and L. Wang, Boundary crossing probability for Brownian motion, J. Appl. Probab. 38 (2001) 152-164; MR1816120 (2002a:60138).
[28] E. Di Nardo, A. G. Nobile, E. Pirozzi and L. M. Ricciardi, A computational approach to first-passage-time problems for Gauss-Markov processes, Adv. Appl. Probab. 33 (2001) 453-482; MR1842303 (2002e:60053).
[29] U. Sumita, J.-Y. Gotoh and H. Jin, Numerical exploration of dynamic behavior of Ornstein-Uhlenbeck processes via Ehrenfest process approximation, J. Oper. Res. Soc. Japan 49 (2006) 256-278; MR2267891 (2008g:60108).
[30] S. O. Rice, Distribution of the duration of fades in radio transmission: Gaussian noise model, Bell System Tech. J. 37 (1958) 581-635; MR0094269 (20 \#788).
[31] D. Slepian, The one-sided barrier problem for Gaussian noise, Bell System Tech. J. 41 (1962) 463-501; MR0133183 (24 \#A3017).
[32] J. Keilson and H. F. Ross, Gaussian Markov Related Variates for Meteorological Planning, AFGL-TR-79-0282, ADA081382 (1979), Univ. of Rochester; available through the National Technical Information Service, Springfield VA 22161.
[33] D. M. DeLong, Crossing probabilities for a square root boundary by a Bessel process, Comm. Statist. A-Theory Methods 10 (1981) 2197-2213; erratum 12 (1983) 1699; MR0629897 (82i:62119) and MR0711257 (84i:62106).
[34] J.-M. Azaïs and M. Wschebor, The distribution of the maximum of a Gaussian process: Rice method revisited, In and Out of Equilibrium: Probability with a Physics Flavor, Proc. 2000 Mambucaba conf., ed. V. Sidoravicius, Birkhäuser Boston, 2002, pp. 321-348; MR1901961 (2003d:60075).
[35] A. Estrella, Critical values and p values of Bessel process distributions: Computation and application to structural break tests, Econometric Theory 19 (2003) 1128-1143.
[36] G. Louchard, C. Kenyon and R. Schott, Data structures' maxima, SIAM J. Comput. 26 (1997) 1006-1042; MR1460714 (98m:68045).
[37] J. Pickands, Upcrossing probabilities for stationary Gaussian processes, Trans. Amer. Math. Soc. 145 (1969) 51-73; MR0250367 (40 \#3606).
[38] J. Pickands, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969) 75-86; MR0250368 (40 \#3607).
[39] S. M. Berman, Maxima and high level excursions of stationary Gaussian processes, Trans. Amer. Math. Soc. 160 (1971) 65-85; MR0290449 (44 \#7630).
[40] C. Qualls and H. Watanabe, Asymptotic properties of Gaussian processes, Annals of Math. Statist. 43 (1972) 580-596; MR0307318 (46 \#6438).
[41] M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer-Verlag, 1983, pp. 216-237; MR0691492 (84h:60050).
[42] S. R. Finch, Extreme value constants, Mathematical Constants, Cambridge Univ. Press, 2003, pp. 363-367.
[43] Q.-M. Shao, Bounds and estimators of a basic constant in extreme value theory of Gaussian processes, Statist. Sinica 6 (1996) 245-257; MR1379060 (97e:60048).
[44] K. Debicki, Z. Michna and T. Rolski, Simulation of the asymptotic constant in some fluid models, Stoch. Models 19 (2003) 407-423; MR1993949.
[45] W. V. Li and Q.-M. Shao, Gaussian processes: Inequalities, small ball probabilities and applications, Stochastic Processes: Theory and Methods, ed. D. N. Shanbhag and C. R. Rao, North-Holland, 2001, pp. 533-597; MR1861734.
[46] P. Mandl, The distribution of time needed for the Uhlenbeck process to reach a border (in Czech), Aplikace Mat. 7 (1962) 141-148; Zbl. 0138.11303.
[47] P. Mandl, Analytical Treatment of One-Dimensional Markov Processes, SpringerVerlag, 1968, p. 145; MR0247667 (40 \#930).
[48] J. A. Beekman, Asymptotic distributions for the Orstein-Uhlenbeck process, J. Appl. Probab. 12 (1975) 107-114; MR0388521 (52 \#9357).
[49] K. Uchiyama, Brownian first exit from and sojourn over one-sided moving boundary and application, Z. Wahrsch. Verw. Gebiete 54 (1980) 75-116; MR0595482 (82c:60143).
[50] E. Perkins, On the Hausdorff dimension of the Brownian slow points, Z. Wahrsch. Verw. Gebiete 64 (1983) 369-399; MR0716493 (85g:60085b).
[51] L. Breiman, First exit times from a square root boundary, Proc. Fifth Berkeley Symp. Math. Stat. Probab., vol. II, part 2, ed. L. M. Le Cam and J. Neyman, Univ. of Calif. Press, 1967, pp. 9-16; MR0212865 (35 \#3730).
[52] K. Lindenberg, K. E. Shuler, J. Freeman and T. J. Lie, First passage time and extremum properties of Markov and independent processes, J. Statist. Phys. 12 (1975) 217-251; MR0458604 (56 \#16804).
[53] Y. S. Chow and H. Teicher, On second moments of stopping rules, Annals of Math. Statist. 37 (1966) 388-392; MR0192528 (33 \#753).
[54] L. A. Shepp, A first passage problem for the Wiener process, Annals of Math. Statist. 38 (1967) 1912-1914; MR0217879 (36 \#968).
[55] B. M. Brown, Moments of a stopping rule related to the central limit theorem, Annals of Math. Statist. 40 (1969) 1236-1249; MR0243689 (39 \#5010).
[56] B. Davis, On Brownian slow points, Z. Wahrsch. Verw. Gebiete 64 (1983) 359367; MR0716492 (85g:60085a).
[57] P. Greenwood and E. Perkins, A conditioned limit theorem for random walk and Brownian local time on square root boundaries, Annals of Probab. 11 (1983) 227-261; MR0690126 (85d:60068).
[58] F. Haake, J. W. Haus and R. Glauber, Passage-time statistics for the decay of unstable equilibrium states, Phys. Rev. A 23 (1981) 3255-3271; MR0615182 (82f:81039).
[59] E. Csáki and Z. Shi, Some lim inf results for two-parameter processes, Stochastic Process. Appl. 78 (1998) 27-46; MR1653288 (99i:60064).
[60] E. Csáki and Y. Hu, On the ranked excursion heights of a Kiefer process, J. Theoret. Probab. 17 (2004) 145-163; MR2054583.
[61] P. Valkó and J. Abate, Numerical Laplace Inversion (2002), http://library.wolfram.com/infocenter/MathSource/4738/.
[62] J. Abate and P. Valkó, Numerical Inversion of Laplace Transform with Multiple Precision Using the Complex Domain (2003), http://library.wolfram.com/infocenter/MathSource/5026/.
[63] J. Abate and P. Valkó, Multi-precision Laplace transform inversion, Internat. J. Numer. Methods Engineering. 60 (2004) 979-993; http://www.pe.tamu.edu/valko/public_html/Nil/.
[64] T. Dankel, On the distribution of the integrated square of the OrnsteinUhlenbeck process, SIAM J. Appl. Math. 51 (1991) 568-574; MR1095035 (92c:60056).
[65] F. Gao, J. Hannig, T.-Y. Lee and F. Torcaso, Laplace transforms via Hadamard factorization, Elec. J. Probab. 8 (2003) P13; MR1998764 (2005h:60110).
[66] K. Burnecki and Z. Michna, Simulation of Pickands constants, Probab. Math. Statist. 22 (2002) 193-199; MR1944151.
[67] K. Debicki and P. Kisowski, A note on upper estimates for Pickands constants, Statist. Probab. Lett. 78 (2008) 2046-2051; MR2458013 (2009k:60089).
[68] A. J. Harper, Bounds on the suprema of Gaussian processes, and omega results for the sum of a random multiplicative function, Annals Appl. Probab. 23 (2013) 584-616; MR3059269.
[69] A. B. Dieker and B. Yakir, On asymptotic constants in the theory of extremes for Gaussian processes, Bernoulli 20 (2014) 1600-1619; arXiv:1206.5840; MR3217455.

[^0]: ${ }^{0}$ Copyright © 2004 by Steven R. Finch. All rights reserved.

