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We first define several words. A stochastic process { :  ≥ 0} is

• stationary if, for all 1  2       and   0, the random -vectors

(1 2     ) and (1+ 2+     +) are identically distributed; that

is, time shifts leave joint probabilities unchanged

• Gaussian if, for all 1  2      , the -vector (1 2     ) is multi-

variate normally distributed

• Markovian if, for all 1  2      , P( ≤  |1  2      −1) =
P( ≤  |−1); that is, the future is determined only by the present and not
the past.

Also, a process { :  ≥ 0} is said to have independent increments if, for all
0  1      , the  random variables 1 − 0 , 2 − 1 , ...,  − −1
are independent. This condition implies that { :  ≥ 0} is Markovian, but not
conversely. The increments are further said to be stationary if, for any    and

  0, the distribution of +− + is the same as the distribution of − . This

additional provision is needed for the following definition.

A stochastic process { :  ≥ 0} is a Wiener-Lévy process or Brownian

motion if it has stationary independent increments, if is normally distributed and

E() = 0 for each   0, and if 0 = 0. It follows immediately that { :   0}
is Gaussian and that Cov() = 2min{ }, where the variance parameter 2
is a positive constant. For concreteness’ sake, we henceforth assume that  = 1.

Almost all sample paths of Brownian motion are everywhere continuous but nowhere

differentiable.

One technical stipulation is required for the following. A stochastic process { :
 ≥ 0} is continuous in probability if, for all  ∈ R+ and   0, P (| − | ≥ )→
0 as  → . This holds if Cov( ) is continuous over R+ × R+. Note that this is
a statement about distributions, not sample paths.

Having dispensed with preliminaries, we turn to the central topic. A stochastic

process { :  ≥ 0} is an Ornstein-Uhlenbeck process or a Gauss-Markov
0Copyright c° 2004 by Steven R. Finch. All rights reserved.
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process if it is stationary, Gaussian, Markovian, and continuous in probability [1, 2].

A fundamental theorem, due to Doob [3, 4, 5], ensures that { :  ≥ 0} necessarily
satisfies the following linear stochastic differential equation:

 = −( − )+  

where { :  ≥ 0} is Brownian motion with unit variance parameter and , ,  are
constants. We have moments

E() =  Cov() =
2

2
−|−|

in the unconditional (strictly stationary) case and

E( |0 = ) = + (− )−

Cov(  |0 = ) =
2

2

¡
−|−| − −(+)

¢
in the conditional (asymptotically stationary) case, where 0 is initially constant.

The latter case encompasses Brownian motion when  =  = 0,  = 1 and  → 0+.

The former case encompasses idealized white noise { :  ≥ 0} when  = 0,

 =  and →∞.
Before proceeding, we note the following simple algorithm for generating a sample

path of the Ornstein-Uhlenbeck process (also known as colored noise) over the time

interval [0  ]. Let  be a large integer and let 0, 1, ...,  be independent random

numbers generated from a normal distribution with mean 0 and variance 2(2).

Define 0 =  + 0 for the unconditional case and 0 =  for the conditional case.

Then define recursively

 = + (−1 − ) +

q
1− 2

for 1 ≤  ≤  , where  = exp(−). The sequence 0, 1, ...,  is called a

first-order autoregressive sequence (a discrete analog of the OU process) with lag-one

correlation coefficient  . Finally, interpolate linearly the values () = 
for 0 ≤  ≤  to obtain the desired path [6, 7, 8]. More sophisticated simulation

methods are found in [9, 10, 11].

For concreteness’ sake, we henceforth assume that  = 0,  = 1 and 2 = 2.

(Some authors take 2 = 1 instead; the decision becomes apparent in any paper by

seeing whether Cov() is 
−|−| or −|−|2.) The conditional probability

P( ≤  |0 = ) =
1p

2(1− −2)

Z
−∞

exp

µ
−( − −)2

2(1− −2)

¶

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tends to the standard normal distribution, of course, as →∞ (meaning that tran-

sients die out with time and don’t affect long-term behavior). Likewise, P( ≤ 

and  ≤  |0 = ) can be evaluated. One might believe that the solution of any

problem involving the OU process would be similarly straightforward; the following

sections serve, however, to eliminate such ideas [12, 13].

0.1. First-Passage Times. For  ∈ R, we wish to find the length of time required
for an OU process to cross the level  = , given that it started at  = . Define the

first-passage time or hitting time  by  = inf { ≥ 0 :  =  |0 = }.
The random variable  is 0 if and only if  = . Let () denote the density

function of . In the special case when  = 0, it is known that [2, 12, 14, 15]

0() =

r
2



||−
(1− −2)32

exp

µ
− 2−2

2(1− −2)

¶
but for  6= 0, the formulas for () are more complicated (as we shall soon see).
For   0 and   0, Thomas [16] and Ricciardi & Sato [17, 18] demonstrated that

E(0) =

r


2

Z
0

µ
1 + erf

µ
√
2

¶¶
exp

µ
2

2

¶
 =

1

2

∞X
=1

¡√
2
¢

!
Γ

µ


2

¶


E(0) =

r


2

0Z
−

µ
1 + erf

µ
√
2

¶¶
exp

µ
2

2

¶
 =

1

2

∞X
=1

(−1)+1
¡√
2
¢

!
Γ

µ


2

¶
and, for example,

E(10) = 20934066496 E(01) = 09019080126

E(20) = 104284093979 E(02) = 14252045655

The asymmetry in going from 0 to , versus going from  to 0, is unsurprising: The

process has mean 0, hence it tends to arrive at 0 more often than it departs from 0.

For   0 and   0, we have [17, 18]

Var(0) =
√
2

Z
0

Z
−∞

Z


µ
1 + erf

µ
√
2

¶¶
exp

µ
2 + 2 − 2

2

¶
  − E(0)2

= E(0)
2 − 1

2

∞X
=1

¡√
2
¢

!
Γ

µ


2

¶
Ψ

µ


2

¶

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Var(0) =
√
2

0Z
−

Z
−∞

0Z


µ
1 + erf

µ
√
2

¶¶
exp

µ
2 + 2 − 2

2

¶
  − E(0)2

=
1

2

∞X
=1

(−1)
¡√
2
¢

!
Γ

µ


2

¶
Ψ

µ


2

¶
− E(0)2

where Ψ() = () − (1) and () is the digamma function [19]. In particular,

Ψ(1) = 0 and

Ψ() =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−1X
=1

1


if  is an integer  1

−2 ln(2) + 2
−12X
=1

1

2 − 1 if  is a half-integer  0

For example,

Var(10) = 58420278024 Var(01) = 08510837032

Var(20) = 1052752035488 Var(02) = 10669454393

To compute () exactly for arbitrary  and , we would need to invert the

following (Laplace transform) identity due to Darling & Siegert [20, 21, 22, 23]:

E(
−) =

∞Z
0

()
− =

⎧⎪⎪⎨⎪⎪⎩
−(−)
−(−) exp

µ
2 − 2

4

¶
if   

−()
−()

exp

µ
2 − 2

4

¶
if   

where () is the parabolic cylinder function orWeber function [24]:

() =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r
2


exp

µ
2

4

¶ ∞Z
0

 exp

µ
−

2

2

¶
cos
³
− 

2

´
 if   −1

1

Γ(−) exp
µ
−

2

4

¶ ∞Z
0

−−1 exp

µ
−

2

2
− 

¶
 if   0

The two branches of this formula agree for −1    0. A differential equation

2

2
−
µ
2

4
−  − 1

2

¶
() = 0
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is satisfied by () and, if  is not an integer, independently by −(). A series
representation in terms of confluent hypergeometric functions [0.4] is also useful.

Unfortunately a closed-form expression for the inverse Laplace transform seems not

to be possible; only a numerical approach is feasible at present. Keilson & Ross [25]

tabulated the distribution of  for a number of values  and . For example, the

median time for an OU process  to reach  = 1, given that 0 =  = 0, is 11892.

This corresponds to the 50th percentile of the distribution of 10. The median of 20,

by contrast, is 72521.

We turn to a more complicated problem involving two (absorbing) boundaries

rather than just one. Given     , what is the length of time required for

the process to escape the interval ( ), given that it started at  = ? Define

 = inf { ≥ 0 :  =  or  =  |0 = } and let () denote the density
function of . Efforts have focused on the scenario in which − =   0. The

Laplace transform of −() satisfies [22]

E(
−−) =

−() +−(−)
−() +−(−) exp

µ
2 − 2

4

¶
assuming −    . From another table in [25], the median of −110 is found to be
04449. The reason that this is less than 11892 is clear: Each direction of travel

leads to a potential crossing. The median of −220 is 32439.
Keilson & Ross’ approach to evaluating such probabilities was based on finding

zeroes and residues in the complex plane of the parabolic cylinder functions. Alterna-

tive approaches for numerically computing () and −() include [26, 27, 28, 29].
We report on some related asymptotics in [0.4].

There is an obvious connection between first-passage times and extreme values of

a process (in the conditional case). We simply summarize:

P

µ
max
0≤≤

 ≤ 

¯̄̄̄
0 = 

¶
if   

P

µ
min
0≤≤

 ≥ 

¯̄̄̄
0 = 

¶
if   

⎫⎪⎪⎬⎪⎪⎭ = P(   ) = 1− ( )

and, if     ,

P

µ
 ≤ min

0≤≤
 ≤ max

0≤≤
 ≤ 

¯̄̄̄
0 = 

¶
= P(   ) = 1− ( )

where (), () are the cumulative distribution functions of , . In

the special case when − =   0, the latter formula becomes a statement about
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max0≤≤ ||, given 0 = . Also, the range of the process satisfies [22]

P

µ
max
0≤≤

 − min
0≤≤

 ≤ 

¯̄̄̄
0 = 

¶
=

Z
0

Z
−

2

 
( )

¯̄̄̄
=+

 

but no one apparently has calculated this probability.

0.2. Historical Maximums. If the condition 0 =  is discarded, what then

can be said about max0≤≤  or max0≤≤ ||? We focus solely on the former

expression and write  = max0≤≤ . It can be shown that [30, 31, 32]

P( ≤ 0) = 1


arcsin

¡
−

¢
which is a beautiful (but isolated) result. More generally [32],

∞Z
0

P( ≤ )− =
1√
2

Z
−∞

1



µ
1− −(−)

−(−) exp
µ
2 − 2

4

¶¶
exp

µ
−

2

2

¶


for arbitrary , or

∞Z
0

()
− =

1√
2

−−1(−)2
−(−)2 exp

µ−2
2

¶
where () is the density function of . For example, the median value of 1 is

10393 and the median value of 10 is 22202. It can be inferred from [0.3] that

the median of  is asymptotically
p
2 ln( ) as  →∞.

An alternative approach for numerically computing P( ≤ ) via the Mellin

transform is due to DeLong [33, 34, 35]. We hope to report on this later. An in-

teresting application to computer science, involving the maximum size reached by a

dynamic data structure over a long span of time, is described in [36].

0.3. Pickands’ Constants. Assume that { :  ≥ 0} is a stationary Gaussian
process with zero mean, unit variance and covariance function of the form

 (|− |) = Cov( ) = 1−  |− | +  (|− |)
as |− | → 0, where 0   ≤ 2 and   0 are constants. Assume further that

() ln() → 0 as  → ∞. Pickands [37, 38, 39, 40, 41] demonstrated that  =

max0≤≤  has the Gumbel limiting distribution [42]

lim
→∞P

³p
2 ln( ) ( −  ) ≤ 

´
= exp(−−)
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where

 =
p
2 ln( ) +

1p
2 ln( )

½
2− 

2
ln(ln( )) + ln

³
(2)−

1
22

2−
2 

1


´¾
and is a positive constant independent of . It is known that 1 = 1 (correspond-

ing to the OU process) and 2 = 1
√
. No other exact values for  are known.

An alternative characterization of  is

 = lim
→∞

∞Z
0

P(̃  )

where {̃ :  ≥ 0} is a nonstationary Gaussian process with

E(̃) = − ||  Cov(̃ ̃) = || + || − |− |

but this does not seem to help. Shao [43] and Debicki, Michna & Rolski [44] gave

bounds on ; for example,

0009 ≤ 12 ≤ 71594 0208 ≤ 32 ≤ 304

A conjecture that  = 1Γ(1) remains unproved. There is also a connection with

the Gaussian correlation conjecture and with estimating small ball probabilities [45],

topics which we hope to address later.

0.4. Upper Tail Asymptotics. We revisit the single-boundary first-passage time

distribution and ask about the limiting value

() = lim
→∞

1


ln {P (0  )}

as a function of   0. In words, what can be said about the upper tail of the

distribution of the first hitting time 0 for an OU process  across the level  = ,

given that0 = 0? Mandl [46, 47] and Beekman [48] demonstrated that −1  () 

0 and that () is the zero of −(−) closest to 0. Sample values include [17, 49, 50]

lim
→0+

() = −1 lim
→∞

() · exp(
22)


=
−1√
2



(07649508673) = −1
2


(1) = −03882382947 = 2(−01941191473)
(2) = −00972745958 = 2(−00486372979)
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For the symmetric double-boundary first-passage time distribution, we examine

(− ) = lim
→∞

1


ln {P (−0  )}

as a function of   0. Breiman [51] proved that −∞  (− )  0 and that

(− ) is the zero of Φ(2 12 22) closest to 0, where

Φ(  ) = 1 +

∞X
=1

(+ 1)(+ 2) · · · (+  − 1)
( + 1)( + 2) · · · ( +  − 1)



!

is the confluent hypergeometric function of the first kind. For simplicity,

define () = (− ). Sample values include [50, 51, 52]

lim
→0+

() = −∞ lim
→∞

() · exp(
22)


=
−1√
2



(1) = −2 (13069297277) = −1 (16438001904) = −1
2




µq
3−
√
6

¶
= (07419637843) = −4

(2) = −02429928807 (3) = −00239463006

¡√
2
¢
= −07984598320 

¡
2
√
2
¢
= −00374612092

The latter two values come from [52], where a different time scaling was chosen.

Also, the constant (3− 612)12 appears in [53, 54, 55] with regard to stopping rules
in statistical sequential analysis.

For completeness’ sake, here is the expression for −() in terms of confluent
hypergeometric functions:

−() =
√
2−2

Γ((1 + )2)
−

24Φ

µ


2

1

2

2

2

¶
− 2
√
2−(1+)2

Γ(2)
−

24Φ

µ
1 + 

2

3

2

2

2

¶
which gives rise to the values (1), (2) and −1(−12) listed earlier. The constant
−1(−1) is important in the study of sample path behavior of Brownian motion [50,
56, 57] and first appeared in [54], as far as is known. Some higher dimensional results

are given in [50, 58]. Csáki [59, 60] recently outlined the distributional asymptotics

of the maximum  , but we cannot discuss this topic further.

0.5. Addendum. New numerical transform inversion algorithms [61, 62, 63] make

enhancement of the tables in [25, 32] possible. Also, the distribution of the 2-norm

of  on [0  ] can be inferred from closed-form expressions in [64, 65]. We wonder

about corresponding results for 1 and ∞-norms. The conjectured formula for in

terms of the gamma function is probably false [66, 67, 68, 69]; simulation-based point

estimates 32 ≈ 077 and confidence bounds 0768 ≤ 32 ≤ 0786 do not carry over
well to 12 since the underlying algorithm becomes unreliable for 0    1.
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