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We mentioned Plateau’s problem in [1] but did not give a nontrivial example. Let
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denote the incomplete elliptic integral of the first kind and [] =  [2]; the

latter is admittedly incompatible with [2] but we purposefully choose formulas here

to be consistent with the computer algebra package MATHEMATICA. The three basic

Jacobi elliptic functions are defined via
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and two (of nine) others we require are
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sn()
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Our work supplements [3] very closely, even down to the level of notation. The

setting is three-dimensional -space.

0.1. Six Edges of a Cube. Consider a polygonal wire loop with six line seg-

ments:

(0 0 0)→ (1 0 0)→ (1 0 1)→ (1 1 1)→ (0 1 1)→ (0 1 0)→ (0 0 0)

What is the minimal area for any surface spanning this fixed boundary? Equivalently,

what is the outcome of dipping the wire loop in a soap solution?
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Define

0 = [14] = 16857503548

and let  = E() denote the functional inverse of the elliptic integral
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The desired minimal surface is given implicitly by the equation [3]

E()E() = E()

where 0 ≤    ≤ 0.

This is as far as Nitsche [3] went in describing his calculations. Solving for  and

rescaling (so that the surface spans the 1× 1× 1 cube), we find that
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as predicted in [4]. See Figure 1.

0.2. Four Edges of a Regular Tetrahedron. Consider a polygonal wire loop

with four line segments:

(0 0 0)→ (1 0 1)→ (1 1 0)→ (0 1 1)→ (0 0 0)

Again, what is the minimal area for any surface spanning this fixed boundary?

With 0 as before, let  = F() denote the functional inverse of the elliptic integral
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The desired minimal surface is given implicitly by the equation [3]

F()F() +F()F() +F()F() + 1 = 0
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Figure 1: “Six edges” minimal surface
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where 0 ≤   ≤ 0 and −0 ≤  ≤ 0. Dalpe [5] introduced one correction in the

preceding: the cube has side 0, not 20.

This is as far as described in [3]. Solving for  and rescaling (so that the surface

spans the 1× 1× 1 cube), we find that
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(note multiplication in the numerator and sn in the denominator, unlike before) and

the surface area is
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as predicted in [4]. See Figure 2. This example and the first one feature portions of

what is known as the Schwarz D surface (D stands for “Diamond”).

0.3. Two Diagonals and Free Boundaries. Consider the soap film (resembling

a twisted curtain) formed between two skew line segments:

(2 0 0)→ (0 2 0) and (0 0 2)→ (2 2 2)

Understanding that two remaining boundaries are unspecified, what is the minimal

area for any surface spanning the diagonals? [6] This is a famous question due to

Gergonne (1816) and answered by Schwarz (1872).

For fixed   0, let  = ( ) and  = ( ) denote functional inverses of the

elliptic integrals
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Figure 2: Tetrahedral “four edges” minimal surface
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and these two expressions, when set equal, force  = 0 = 02092861374. Denote

the former integral by 0 and latter by 0; consequently 0 = 0 = 13970394887.

The desired minimal surface is given implicitly by the equation [3]

(− 0)( − 0) +( − 0) = 0

where 0 ≤   ≤ 20 and 0 ≤  ≤ 20. We have introduced two corrections in the
preceding: the upper integration limit of 0 is 1 (not (), which was a typographical

error in [3]) and the denominator underlying 
£− 1

4

¤
is 2
√
 (not merely 2, which

was a computational error in [3]). More on the second correction will be mentioned

shortly.

This, again, is as far as described in [3]. Let

0 = (1 + 40)
14

0 0 = (0) ( ) =
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Solving for  and rescaling (so that the surface spans the 2×2×2 cube), we find that
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and a closed-form expression remains open. See Figure 3. We have not attempted to

establish consistency with [7].

0.4. Details of Elliptic Functions. We can compute E() and F() using re-
sults in [8]:
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Figure 3: “Two diagonals” minimal surface
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since each quartic has four imaginary zeroes; hence
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gives the “six edges” result. From

F() = −1 +F()F()F() +F()
we obtain
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and, because sn()2 + cn()2 = 1, the “four edges” result follows.

Computing ( ) is somewhat different [9]:

 =

Z
0

√
−  2 −  4

=
1

(1 + 4)
14

⎧⎨⎩[()]− 

⎡⎣arcsin
⎛⎝s√1 + 4− 22 − 1√

1 + 4− 1

⎞⎠  ()

⎤⎦⎫⎬⎭
since the quartic has two real zeroes and two imaginary zeroes. Observe that, when

 = (), the second term vanishes. Inverting, we obtain
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Only the inverse of ( ) is required:
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which generalizes the earlier cases  = −1 and  = 34. Note the specialization  = 1,
as well as the need here to track whether  = −( − 0 )(− 0 ) is positive

or negative.

0.5. Approximations of Minimal Surfaces. A surprisingly good fit to the

“four edges” surface is provided by the hyperbolic paraboloid

 = +  − 2
and the corresponding surface area is
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See [10] for more on approximating the Schwarz D surface, which (upon suitable

transformation) should enable a reasonable fit to the “six edges” surface.

Fairly coarse fits to the “two diagonals” surface are provided by
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 − 1
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areas are 51231 and 50307, respectively. We mentioned earlier that Nitsche [3]

mistakenly solved the equation
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the denominator underlying 
£− 1

4

¤
is missing a factor

√
. It is nevertheless

instructive to follow through to the end. We find  = e0 = 66061877190 and

consequently e0 = e0 = 07781217795. The surface obtained is a minimal surface
(with mean curvature everywhere equal to zero) and correctly spans the diagonals.

The two free contours, however, are not best possible: the surface area for e0 is
49480, which is larger than the surface area 49348 for 0.

The constant 19188 appears in [11, 12], 12792 in [13, 14] and a rough estimate

for 1
4
(49348) in [15]. See [16, 17] for introductory materials, as well as Schwarz’s

complete works [18]. Other polygonal wire loops, with more solutions of Plateau’s

problem, are surveyed in [19].
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0.6. Acknowledgements. Ulrike Bücking was so kind as to point out two errors

in [3]; I also appreciate correspondence with Ðjur†je Cvijovíc and Stefan Hildebrandt.

0.7. Addendum. Another portion of the Schwarz D surface arises as a soap film

spanning two parallel equilateral triangles with vertices

{(1−1−1) (−1 1−1) (−1−1 1)} and {(−1 1 1) (1−1 1) (1 1−1)}

One triangle is a copy of the other, rotated 60◦ about its center. Each of the six

edges has length 2
√
2 and the perpendicular distance between triangular centers is

2
√
3; the ratio of these is

√
6. Define 0 = [89]. The desired minimal annulus

is given implicitly by [18, 20]

sc(0
8
9
) sc(0

8
9
) + sc(0

8
9
) sc(0

8
9
) + sc(0

8
9
) sc(0

8
9
) + 3 = 0

where −1 ≤    ≤ 1 and its surface area is 6[34][14]. See Figure 4. (This
result contradicts a statement in [21] that, for Schwarz D to appear, the ratio of edge

length to distance should be 2
√
3.)

A more difficult task is to represent the minimal annulus corresponding to parallel

triangles that are aligned [22, 23, 24, 25, 26], that is, with no rotation. This is a

member of the family of Schwarz H surfaces (H stands for “Hexagonal”). Assistance

on such representations, for a range of perpendicular distances between triangular

centers, and on numerical calculation of surface areas, would be deeply appreciated.
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Figure 4: “Two twisted triangles” minimal surface
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