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We mentioned Plateau’s problem in [1] but did not give a nontrivial example. Let

 [] =

sin()Z
0

√
1−  2

√
1− 2

denote the incomplete elliptic integral of the first kind and [] =  [2]; the

latter is admittedly incompatible with [2] but we purposefully choose formulas here

to be consistent with the computer algebra package MATHEMATICA. The three basic

Jacobi elliptic functions are defined via

 =

sn()Z
0

√
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√
1− 2

=

1Z
cn()

√
1−  2

p
 2 + (1−)

=

1Z
dn()

√
1−  2

p
 2 − (1−)

and two (of nine) others we require are

sc() =
sn()

cn()
 sd() =

sn()

dn()


Our work supplements [3] very closely, even down to the level of notation. The

setting is three-dimensional -space.

0.1. Six Edges of a Cube. Consider a polygonal wire loop with six line seg-

ments:

(0 0 0)→ (1 0 0)→ (1 0 1)→ (1 1 1)→ (0 1 1)→ (0 1 0)→ (0 0 0)

What is the minimal area for any surface spanning this fixed boundary? Equivalently,

what is the outcome of dipping the wire loop in a soap solution?
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Define

0 = [14] = 16857503548

and let  = E() denote the functional inverse of the elliptic integral

 =

Z
0

√
1 +  2 +  4



The desired minimal surface is given implicitly by the equation [3]

E()E() = E()

where 0 ≤    ≤ 0.

This is as far as Nitsche [3] went in describing his calculations. Solving for  and

rescaling (so that the surface spans the 1× 1× 1 cube), we find that

 =
1

20


"
arccos

Ã
cn
¡
20

1
4

¢
+ cn

¡
20

1
4

¢
1 + cn

¡
20

1
4

¢
cn
¡
20

1
4

¢! 
1

4

#
 0 ≤   ≤ 1

and the surface area is

2

1Z
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1−Z
0

s
1 +

µ




¶2
+

µ




¶2
  =

3

2

[34]

[14]
= 19188923567

as predicted in [4]. See Figure 1.

0.2. Four Edges of a Regular Tetrahedron. Consider a polygonal wire loop

with four line segments:

(0 0 0)→ (1 0 1)→ (1 1 0)→ (0 1 1)→ (0 0 0)

Again, what is the minimal area for any surface spanning this fixed boundary?

With 0 as before, let  = F() denote the functional inverse of the elliptic integral

 =

Z
0

q
3
4
+ 5

2
2 + 3

4
4



The desired minimal surface is given implicitly by the equation [3]

F()F() +F()F() +F()F() + 1 = 0
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Figure 1: “Six edges” minimal surface
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where 0 ≤   ≤ 0 and −0 ≤  ≤ 0. Dalpe [5] introduced one correction in the

preceding: the cube has side 0, not 20.

This is as far as described in [3]. Solving for  and rescaling (so that the surface

spans the 1× 1× 1 cube), we find that

 =
1√
30



"
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#
 0 ≤   ≤ 1

(note multiplication in the numerator and sn in the denominator, unlike before) and

the surface area is

2

1Z
0

1−Z
0

s
1 +

µ

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¶2
+

µ



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[34]

[14]
= 12792615711

as predicted in [4]. See Figure 2. This example and the first one feature portions of

what is known as the Schwarz D surface (D stands for “Diamond”).

0.3. Two Diagonals and Free Boundaries. Consider the soap film (resembling

a twisted curtain) formed between two skew line segments:

(2 0 0)→ (0 2 0) and (0 0 2)→ (2 2 2)

Understanding that two remaining boundaries are unspecified, what is the minimal

area for any surface spanning the diagonals? [6] This is a famous question due to

Gergonne (1816) and answered by Schwarz (1872).

For fixed   0, let  = ( ) and  = ( ) denote functional inverses of the

elliptic integrals

 =

Z
0

√
−  2 −  4

  =

Z
0

p
+ (1 + 2) 2 +   4



Define also

() =

√
1 + 4− 1
2
√
1 + 4

 () =

r√
1 + 4− 1

2


We have, in particular,

()Z
0

√
−  2 −  4

=
[()]

(1 + 4)
14


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Figure 2: Tetrahedral “four edges” minimal surface
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1Z
0

p
+ (1 + 2) 2 +   4

=

£− 1

4

¤
2
√


and these two expressions, when set equal, force  = 0 = 02092861374. Denote

the former integral by 0 and latter by 0; consequently 0 = 0 = 13970394887.

The desired minimal surface is given implicitly by the equation [3]

(− 0)( − 0) +( − 0) = 0

where 0 ≤   ≤ 20 and 0 ≤  ≤ 20. We have introduced two corrections in the
preceding: the upper integration limit of 0 is 1 (not (), which was a typographical

error in [3]) and the denominator underlying 
£− 1

4

¤
is 2
√
 (not merely 2, which

was a computational error in [3]). More on the second correction will be mentioned

shortly.

This, again, is as far as described in [3]. Let

0 = (1 + 40)
14

0 0 = (0) ( ) =

½
1 if (− 1)( − 1)  0
−1 otherwise.

Solving for  and rescaling (so that the surface spans the 2×2×2 cube), we find that

 = 1 +
( )

2
√
0



"
arccos

Ã
sd (0(− 1) 0)2 − sd (0( − 1) 0)2
sd (0(− 1) 0)2 + sd (0( − 1) 0)2

!
− 1

40

#
assuming (   and   2− ) or (   and   2− ); elsewhere on 0 ≤   ≤ 2,
no definition for  is given. The surface area is

4

1Z
0

1−Z
0

s
1 +

µ

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¶2
+

µ




¶2
  = 49348196582 = 4 (12337049145)

and a closed-form expression remains open. See Figure 3. We have not attempted to

establish consistency with [7].

0.4. Details of Elliptic Functions. We can compute E() and F() using re-
sults in [8]:

 =

Z
0
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1 +  2 +  4

=
1
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∙
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¶

1
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¸

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0

q
3
4
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2
2 + 3

4
4
=

1√
3


∙
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µ
1− 2
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¶
−1
3

¸
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Figure 3: “Two diagonals” minimal surface
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since each quartic has four imaginary zeroes; hence

 =

s
1− cn (2 14)
1 + cn (2 14)



 =

s
1− cn ¡√3−13¢
1 + cn

¡√
3−13¢

and thus

 =
1

2


∙
arccos

µ
1− E()2E()2
1 + E()2E()2

¶

1

4

¸
gives the “six edges” result. From

F() = −1 +F()F()F() +F()
we obtain

 =
1√
3


⎡⎢⎣arccos
⎛⎜⎝1−

³
1+F()F()
F()+F()

´2
1 +

³
1+F()F()
F()+F()

´2
⎞⎟⎠ −1

3

⎤⎥⎦
and, because sn()2 + cn()2 = 1, the “four edges” result follows.

Computing ( ) is somewhat different [9]:

 =

Z
0

√
−  2 −  4

=
1

(1 + 4)
14

⎧⎨⎩[()]− 

⎡⎣arcsin
⎛⎝s√1 + 4− 22 − 1√

1 + 4− 1

⎞⎠  ()

⎤⎦⎫⎬⎭
since the quartic has two real zeroes and two imaginary zeroes. Observe that, when

 = (), the second term vanishes. Inverting, we obtain

 =


(1 + 4)
14
sd
³
(1 + 4)

14
 ()

´
and therefore

−( − 0 )

(− 0 )
= −

sd
³
(1 + 4)

14
( − 0) ()

´
sd
³
(1 + 4)

14
(− 0) ()

´ 
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Only the inverse of ( ) is required:

 =

Z
0

p
+ (1 + 2) 2 +   4

=
sign()

2
√




∙
arccos

µ
1− 2

1 + 2

¶
− 1
4

¸
which generalizes the earlier cases  = −1 and  = 34. Note the specialization  = 1,
as well as the need here to track whether  = −( − 0 )(− 0 ) is positive

or negative.

0.5. Approximations of Minimal Surfaces. A surprisingly good fit to the

“four edges” surface is provided by the hyperbolic paraboloid

 = +  − 2
and the corresponding surface area is

2

1Z
0

1−Z
0

s
1 +

µ




¶2
+

µ




¶2
  = 12807  12792

See [10] for more on approximating the Schwarz D surface, which (upon suitable

transformation) should enable a reasonable fit to the “six edges” surface.

Fairly coarse fits to the “two diagonals” surface are provided by

 = 1 +
 − 1
− 1   = 1 +

4


arctan

µ
 − 1
− 1

¶
if (   and   2 − ) or (   and   2 − ), and the corresponding surface

areas are 51231 and 50307, respectively. We mentioned earlier that Nitsche [3]

mistakenly solved the equation

[()]

(1 + 4)
14
=


£− 1

4

¤
2

;

the denominator underlying 
£− 1

4

¤
is missing a factor

√
. It is nevertheless

instructive to follow through to the end. We find  = e0 = 66061877190 and

consequently e0 = e0 = 07781217795. The surface obtained is a minimal surface
(with mean curvature everywhere equal to zero) and correctly spans the diagonals.

The two free contours, however, are not best possible: the surface area for e0 is
49480, which is larger than the surface area 49348 for 0.

The constant 19188 appears in [11, 12], 12792 in [13, 14] and a rough estimate

for 1
4
(49348) in [15]. See [16, 17] for introductory materials, as well as Schwarz’s

complete works [18]. Other polygonal wire loops, with more solutions of Plateau’s

problem, are surveyed in [19].
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0.7. Addendum. Another portion of the Schwarz D surface arises as a soap film

spanning two parallel equilateral triangles with vertices

{(1−1−1) (−1 1−1) (−1−1 1)} and {(−1 1 1) (1−1 1) (1 1−1)}

One triangle is a copy of the other, rotated 60◦ about its center. Each of the six

edges has length 2
√
2 and the perpendicular distance between triangular centers is

2
√
3; the ratio of these is

√
6. Define 0 = [89]. The desired minimal annulus

is given implicitly by [18, 20]

sc(0
8
9
) sc(0

8
9
) + sc(0

8
9
) sc(0

8
9
) + sc(0

8
9
) sc(0

8
9
) + 3 = 0

where −1 ≤    ≤ 1 and its surface area is 6[34][14]. See Figure 4. (This
result contradicts a statement in [21] that, for Schwarz D to appear, the ratio of edge

length to distance should be 2
√
3.)

A more difficult task is to represent the minimal annulus corresponding to parallel

triangles that are aligned [22, 23, 24, 25, 26], that is, with no rotation. This is a

member of the family of Schwarz H surfaces (H stands for “Hexagonal”). Assistance

on such representations, for a range of perpendicular distances between triangular

centers, and on numerical calculation of surface areas, would be deeply appreciated.
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