login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249233 T(n,k)=Number of length n+5 0..k arrays with no six consecutive terms having two times the sum of any two elements equal to the sum of the remaining four 14

%I

%S 42,486,62,2772,972,92,10620,7736,1944,136,32070,36880,21648,3888,200,

%T 81402,133270,128436,60744,7776,292,183696,400152,556024,448148,

%U 170928,15552,422,376752,1044612,1974784,2325864,1566052,482388,31104,612

%N T(n,k)=Number of length n+5 0..k arrays with no six consecutive terms having two times the sum of any two elements equal to the sum of the remaining four

%C Table starts

%C ...42....486.....2772.....10620.......32070........81402........183696

%C ...62....972.....7736.....36880......133270.......400152.......1044612

%C ...92...1944....21648....128436......556024......1974784.......5967084

%C ..136...3888....60744....448148.....2325864......9772492......34184700

%C ..200...7776...170928...1566052.....9746100.....48456384.....196210998

%C ..292..15552...482388...5479172....40881292....240606388....1127486210

%C ..422..31104..1365524..19188990...171561694...1195936390....6483080144

%C ..612..62208..3889132..67392884...720180558...5953728172...37310369094

%C ..900.124416.11085704.236812732..3023733498..29645835078..214752404734

%C .1328.248832.31624832.832339890.12696930054.147647019270.1236199073642

%H R. H. Hardin, <a href="/A249233/b249233.txt">Table of n, a(n) for n = 1..468</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-3) +a(n-4) +a(n-5) +3*a(n-6) +2*a(n-7) +a(n-8) -2*a(n-9) -3*a(n-10) -2*a(n-11) -a(n-12) -a(n-13) +a(n-15) +a(n-16)

%F k=2: a(n) = 2*a(n-1)

%F Empirical for row n:

%F n=1: a(n) = 4*a(n-1) -4*a(n-2) -3*a(n-3) +6*a(n-4) -6*a(n-7) +3*a(n-8) +4*a(n-9) -4*a(n-10) +a(n-11) also a polynomial of degree six plus a linear quasipolynomial with period 6

%e Some solutions for n=3 k=4

%e ..1....3....2....3....0....1....0....0....0....2....2....3....1....1....4....2

%e ..4....0....3....1....3....2....3....1....1....3....4....1....3....1....0....0

%e ..1....4....3....3....4....3....0....4....0....0....0....0....3....1....0....0

%e ..4....0....0....4....2....0....1....1....2....4....0....1....3....4....0....3

%e ..0....0....3....1....4....2....0....4....1....3....1....0....3....2....3....1

%e ..0....0....3....4....4....2....3....1....0....2....0....2....0....4....1....2

%e ..0....0....4....4....2....4....1....0....4....1....0....3....3....2....4....4

%e ..0....3....3....4....3....0....3....1....0....3....3....1....0....1....3....1

%Y Column 1 is A248441

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Oct 23 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 11:16 EDT 2022. Contains 353871 sequences. (Running on oeis4.)