%I
%S 1326,1654,2042,2494,3014,3606,4742,6130,7782,9710,11926,16166,21426,
%T 27758,35214,43846,60294,80882,105830,135358,169686,234886,316898,
%U 416654,535086,673126,934566,1264322,1666342,2144574,2702966,3757734,5090290
%N Number of length n+4 0..5 arrays with every five consecutive terms having two times the sum of some three elements equal to three times the sum of the remaining two
%C Column 5 of A248987
%H R. H. Hardin, <a href="/A248984/b248984.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n1) +10*a(n5) 10*a(n6) 31*a(n10) +31*a(n11) +26*a(n15) 26*a(n16) +8*a(n20) 8*a(n21)
%e Some solutions for n=6
%e ..4....2....4....4....5....0....3....3....4....1....1....3....4....0....4....3
%e ..0....3....0....4....4....1....5....5....3....5....1....1....5....4....0....1
%e ..5....2....5....3....2....5....0....2....3....2....5....0....3....5....2....5
%e ..5....2....4....1....0....4....4....5....5....0....3....0....2....4....0....1
%e ..1....1....2....3....4....0....3....5....0....2....5....1....1....2....4....0
%e ..4....2....4....4....5....5....3....3....4....1....1....3....4....5....4....3
%e ..0....3....0....4....4....1....5....5....3....5....1....1....0....4....5....1
%e ..0....2....5....3....2....0....5....2....3....2....0....5....3....5....2....5
%e ..5....2....4....1....0....4....4....5....0....5....3....0....2....4....5....1
%e ..1....1....2....3....4....5....3....5....0....2....5....1....1....2....4....0
%K nonn
%O 1,1
%A _R. H. Hardin_, Oct 18 2014
