login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A248833
The curvature of touching circles inscribed in a special way in the larger segment of circle of radius 1/6 divided by a chord of length sqrt(8/75).
2
10, 25, 160, 1225, 9610, 75625, 595360, 4687225, 36902410, 290532025, 2287353760, 18008298025, 141779030410, 1116223945225, 8788012531360, 69187876305625, 544714997913610, 4288532107003225, 33763541858112160, 265819802757894025, 2092794880205040010, 16476539238882426025
OFFSET
0,1
COMMENTS
Refer to comment of A240926. Consider a circle C of radius 1/6 (in some length units) with a chord of length sqrt(8/75). This has been chosen such that the larger sagitta has length 1/5. The input, besides the circle C, is the circle C_0 with radius R_0 = 1/10, touching the chord and circle C. The following sequence of circles C_n with radii R_n, n >= 1, is obtained from the conditions that C_n touches (i) the circle C, (ii) the chord and (iii) the circle C_(n-1). The curvature of the n-th circle, C_n = 1/R_n, n >= 0, is conjectured to be a(n). If one considers the curvature of touching circles inscribed in the smaller segment (sagitta length 2/15), the sequence would be A248834. See an illustration given in the link.
LINKS
Kival Ngaokrajang, Illustration of initial terms.
Eric Weisstein's World of Mathematics, Sagitta.
FORMULA
From Colin Barker, Oct 15 2014: (Start)
a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3).
G.f.: -5*(5*x^2-13*x+2) / ((x-1)*(x^2-8*x+1)). (End)
a(n) = 5*(2+(4-sqrt(15))^n+(4+sqrt(15))^n)/2. - Colin Barker, Mar 03 2016
MATHEMATICA
CoefficientList[Series[- 5 (5 x^2 - 13 x + 2)/((x - 1) (x^2 - 8 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2014 *)
LinearRecurrence[{9, -9, 1}, {10, 25, 160}, 30] (* G. C. Greubel, Dec 20 2017 *)
PROG
(PARI)
{
r=0.6; print1(round(6/r), ", "); r1=r;
for (n=1, 40,
if (n<=1, ab=2-r, ab=sqrt(ac^2+r^2));
ac=sqrt(ab^2-r^2);
if (n<=1, z=0, z=(Pi/2)-atan(ac/r)+asin((r1-r)/(r1+r)); r1=r);
b=acos(r/ab)-z;
r=r*(1-cos(b))/(1+cos(b));
print1(round(6/r), ", ");
)
}
(PARI) Vec(-5*(5*x^2-13*x+2)/((x-1)*(x^2-8*x+1)) + O(x^100)) \\ Colin Barker, Oct 15 2014
(Magma) I:=[10, 25, 160]; [n le 3 select I[n] else 9*Self(n-1)-9*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Oct 29 2014
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Oct 15 2014
STATUS
approved