login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of numbers b(i,j) = A(binomial(A(i), A(j))), where A = A007913, with the convention that A(0)=0.
2

%I #30 Dec 25 2023 17:16:08

%S 1,1,1,1,2,1,1,3,3,1,1,1,0,0,1,1,5,10,10,5,1,1,6,15,5,6,6,1,1,7,21,35,

%T 7,21,7,1,1,2,1,0,2,0,0,0,1,1,1,0,0,1,0,0,0,0,1,1,10,5,30,10,7,210,30,

%U 5,10,1,1,11,55,165,11,462,462,330,55,11,11,1

%N Triangle of numbers b(i,j) = A(binomial(A(i), A(j))), where A = A007913, with the convention that A(0)=0.

%C By definition, all terms are squarefree (A005117).

%e For i=8, j=4, we have A(8)=2, A(4)=1, hence b(8,4) = A(binomial(2,1)) = 2.

%e Triangle begins

%e 1

%e 1 1

%e 1 2 1

%e 1 3 3 1

%e 1 1 0 0 1

%e 1 5 10 10 5 1

%e 1 6 15 5 6 6 1

%e 1 7 21 35 7 21 7 1

%e 1 2 1 0 2 0 0 0 1

%e 1 1 0 0 1 0 0 0 0 1

%e 1 10 5 30 10 7 210 30 5 10 1

%e ..........................................

%t a7913[n_]:=a7913[n]=Times@@(#[[1]]^Mod[#[[2]],2])&[Transpose[FactorInteger[n]]];

%t Flatten[Table[a7913[Binomial[a7913[m],a7913[k]]],{m,0,10},{k,0,m}]] (* _Peter J. C. Moses_, Oct 27 2014 *)

%Y Cf. A005117, A007318, A007913, A248470.

%K nonn,tabl

%O 0,5

%A _Vladimir Shevelev_ and _Peter J. C. Moses_, Oct 27 2014