login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A248448 T(n,k)=Number of length n+5 0..k arrays with no three disjoint pairs in any consecutive six terms having the same sum 15

%I #6 Dec 12 2014 20:19:48

%S 42,546,62,3372,1272,92,13500,11436,3000,136,41670,59480,39072,7116,

%T 200,107502,226410,263212,133872,16932,292,243576,694632,1233820,

%U 1166348,459276,40326,422,499992,1824272,4497352,6729772,5171484,1576148,95972

%N T(n,k)=Number of length n+5 0..k arrays with no three disjoint pairs in any consecutive six terms having the same sum

%C Table starts

%C ...42.....546......3372......13500........41670........107502.........243576

%C ...62....1272.....11436......59480.......226410........694632........1824272

%C ...92....3000.....39072.....263212......1233820.......4497352.......13682340

%C ..136....7116....133872....1166348......6729772......29135376......102662460

%C ..200...16932....459276....5171484.....36721992.....188800400......770455736

%C ..292...40326...1576148...22934730....200399588....1223547300.....5782408256

%C ..422...95972...5407584..101700684...1093511486....7928947808....43396532796

%C ..612..228582..18555016..450991386...5966952566...51381959992...325686928754

%C ..900..544916..63680912.2000009808..32560374732..332972844392..2444257395164

%C .1328.1299898.218584848.8869712066.177677103884.2157790887982.18344026931670

%H R. H. Hardin, <a href="/A248448/b248448.txt">Table of n, a(n) for n = 1..499</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 16]

%F Empirical for row n:

%F n=1: a(n) = 6*a(n-1) -14*a(n-2) +14*a(n-3) -14*a(n-5) +14*a(n-6) -6*a(n-7) +a(n-8); also polynomial of degree 6 plus a constant quasipolynomial with period 2

%F n=2: [order 16; also a polynomial of degree 7 plus a linear quasipolynomial with period 12]

%e Some solutions for n=3 k=4

%e ..0....0....1....0....0....1....0....0....1....0....0....0....0....1....1....1

%e ..3....2....0....3....1....3....0....3....1....2....3....0....1....1....3....2

%e ..4....2....3....0....0....1....2....3....2....1....2....4....2....2....2....3

%e ..2....4....3....0....2....3....2....0....0....0....2....0....3....3....1....0

%e ..0....0....2....4....0....3....4....2....0....1....3....2....0....2....0....1

%e ..0....1....2....2....1....2....3....0....1....0....3....1....4....4....3....3

%e ..3....0....1....3....3....2....2....3....4....3....0....0....3....2....1....3

%e ..2....1....0....1....2....0....2....0....4....4....0....2....0....2....3....0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Oct 06 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 15:31 EST 2023. Contains 367419 sequences. (Running on oeis4.)