%I #6 Dec 12 2014 20:19:48
%S 42,546,62,3372,1272,92,13500,11436,3000,136,41670,59480,39072,7116,
%T 200,107502,226410,263212,133872,16932,292,243576,694632,1233820,
%U 1166348,459276,40326,422,499992,1824272,4497352,6729772,5171484,1576148,95972
%N T(n,k)=Number of length n+5 0..k arrays with no three disjoint pairs in any consecutive six terms having the same sum
%C Table starts
%C ...42.....546......3372......13500........41670........107502.........243576
%C ...62....1272.....11436......59480.......226410........694632........1824272
%C ...92....3000.....39072.....263212......1233820.......4497352.......13682340
%C ..136....7116....133872....1166348......6729772......29135376......102662460
%C ..200...16932....459276....5171484.....36721992.....188800400......770455736
%C ..292...40326...1576148...22934730....200399588....1223547300.....5782408256
%C ..422...95972...5407584..101700684...1093511486....7928947808....43396532796
%C ..612..228582..18555016..450991386...5966952566...51381959992...325686928754
%C ..900..544916..63680912.2000009808..32560374732..332972844392..2444257395164
%C .1328.1299898.218584848.8869712066.177677103884.2157790887982.18344026931670
%H R. H. Hardin, <a href="/A248448/b248448.txt">Table of n, a(n) for n = 1..499</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 16]
%F Empirical for row n:
%F n=1: a(n) = 6*a(n-1) -14*a(n-2) +14*a(n-3) -14*a(n-5) +14*a(n-6) -6*a(n-7) +a(n-8); also polynomial of degree 6 plus a constant quasipolynomial with period 2
%F n=2: [order 16; also a polynomial of degree 7 plus a linear quasipolynomial with period 12]
%e Some solutions for n=3 k=4
%e ..0....0....1....0....0....1....0....0....1....0....0....0....0....1....1....1
%e ..3....2....0....3....1....3....0....3....1....2....3....0....1....1....3....2
%e ..4....2....3....0....0....1....2....3....2....1....2....4....2....2....2....3
%e ..2....4....3....0....2....3....2....0....0....0....2....0....3....3....1....0
%e ..0....0....2....4....0....3....4....2....0....1....3....2....0....2....0....1
%e ..0....1....2....2....1....2....3....0....1....0....3....1....4....4....3....3
%e ..3....0....1....3....3....2....2....3....4....3....0....0....3....2....1....3
%e ..2....1....0....1....2....0....2....0....4....4....0....2....0....2....3....0
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Oct 06 2014
|