%I #6 Oct 21 2019 01:18:02
%S 7,2,3,10,256,69688,5330178475,685643579227613855733,
%T 19857919470304339362673575257858955364290957,
%U 4322562711957148145852339662715119494243446939653452977452988955819120724647597129517346
%N Egyptian fraction representation of sqrt(63) (A010516) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 63]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014