%I #6 Oct 20 2019 21:31:26
%S 6,2,18,532,305858,137859230710,22012211318177566410441,
%T 1147928569154887244380386940705198857524244457,
%U 54505440157936785019731226309482186897275025107764309863984976644953861019275801793173245974
%N Egyptian fraction representation of sqrt(43) (A010497) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 43]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014