Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jul 17 2018 02:42:29
%S 27,176,639,1706,3759,7279,12842,21119,32879,48986,70399,98175,133466,
%T 177519,231679,297386,376175,469679,579626,707839,856239,1026842,
%U 1221759,1443199,1693466,1974959,2290175,2641706,3032239,3464559,3941546,4466175,5041519
%N a(n) = floor(1/(zeta(5) - Sum_{h=1..n} 1/h^5)).
%C This sequence provides insight into the manner of convergence of Sum_{h=1..n} 1/h^5.
%H Clark Kimberling, <a href="/A248234/b248234.txt">Table of n, a(n) for n = 1..2000</a>
%H Soumyadip Sahu, <a href="https://arxiv.org/abs/1807.05454">On Certain Reciprocal Sums</a>, arXiv:1807.05454 [math.NT], 2018.
%F Empirically, a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 5*a(n-4) + 6*a(n-5) - 4*a(n-6) + a(n-7), for n >= 10.
%F Conjecture (for n >= 3): (12*n*(1+n)*(4+3*n+3*n^2) - 8 - cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/9. - _Vaclav Kotesovec_, Oct 09 2014
%t z = 400; p[k_] := p[k] = Sum[1/h^5, {h, 1, k}]; N[Table[Zeta[5] - p[n], {n, 1, z/10}]]
%t f[n_] := f[n] = Select[Range[z], Zeta[5] - p[#] < 1/n^4 &, 1]
%t u = Flatten[Table[f[n], {n, 1, z}]] (* A248231 *)
%t Flatten[Position[Differences[u], 0]] (* A248232 *)
%t Flatten[Position[Differences[u], 1]] (* A248233 *)
%t Table[Floor[1/(Zeta[5] - p[n])], {n, 1, z}] (* A248234 *)
%Y Cf. A248231, A248232, A248233, A248227, A013663.
%K nonn,easy
%O 1,1
%A _Clark Kimberling_, Oct 05 2014