The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248229 Numbers k such that A248227(k+1) = A248227(k) + 1. 5

%I #4 Oct 08 2014 16:47:12

%S 2,3,5,6,7,9,10,12,13,15,16,18,19,20,22,23,25,26,28,29,31,32,33,35,36,

%T 38,39,41,42,43,45,46,48,49,51,52,54,55,56,58,59,61,62,64,65,67,68,69,

%U 71,72,74,75,77,78,80,81,82,84,85,87,88,90,91,93,94,95

%N Numbers k such that A248227(k+1) = A248227(k) + 1.

%C Since A248227(k+1) - A248227(k) is in {0,1} for k >= 1, A248228 and A248229 are complementary.

%H Clark Kimberling, <a href="/A248229/b248229.txt">Table of n, a(n) for n = 1..500</a>

%e The difference sequence of A248227 is (0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, ...), so that A248228 = (1, 4, 8, 11, 14, 17, 2,...) and A248229 = (2, 3, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18,...), the complement of A248228.

%t \$MaxExtraPrecision = Infinity; z = 400; p[k_] := p[k] = Sum[1/h^4, {h, 1, k}];

%t N[Table[Zeta[4] - p[n], {n, 1, z/10}]]

%t f[n_] := f[n] = Select[Range[z], Zeta[4] - p[#] < 1/n^3 &, 1];

%t u = Flatten[Table[f[n], {n, 1, z}]] (* A248227 *)

%t Flatten[Position[Differences[u], 0]] (* A248228 *)

%t Flatten[Position[Differences[u], 1]] (* A248229 *)

%t f = Table[Floor[1/(Zeta[4] - p[n])], {n, 1, z}] (* A248230 *)

%Y Cf. A248227, A248228, A248230.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Oct 05 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 07:44 EDT 2024. Contains 375113 sequences. (Running on oeis4.)