%I
%S 824,2760,9248,31092,104692,352744,1189016,4008988,13519544,45597176,
%T 153792912,518737478,1749714774,5901910556,19907726612,67151025042,
%U 226508594218,764042220464,2577213857582,8693283380248,29323606061958
%N Number of length n+4 0..3 arrays with some disjoint pairs in every consecutive five terms having the same sum
%C Column 3 of A247927
%H R. H. Hardin, <a href="/A247922/b247922.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A247922/a247922.txt">Empirical recurrence of order 79</a>
%F Empirical recurrence of order 79 (see link above)
%e Some solutions for n=5
%e ..0....2....2....2....0....1....1....3....2....2....2....0....1....3....3....1
%e ..0....0....3....3....0....3....3....2....1....1....1....2....3....0....0....1
%e ..1....3....1....3....2....2....3....3....1....0....1....3....2....3....2....3
%e ..1....3....2....2....3....3....0....0....2....1....2....2....0....0....1....3
%e ..0....0....3....1....1....0....2....2....3....2....3....1....2....3....3....2
%e ..2....2....2....2....2....2....1....1....2....0....0....1....1....0....1....2
%e ..1....0....3....0....0....1....2....2....1....3....1....3....3....2....3....3
%e ..0....2....3....0....1....0....1....0....1....0....0....3....3....1....1....1
%e ..3....3....3....3....2....2....3....0....0....1....2....3....2....2....3....3
%K nonn
%O 1,1
%A _R. H. Hardin_, Sep 26 2014
