The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247916 Numbers k such that A247914(k+1) = A247914(k) + 1. 3

%I #4 Sep 27 2014 19:03:20

%S 1,6,10,14,19,23,28,33,38,43,49,54,59,65,71,76,82,88,94,100,106,112,

%T 118,124,130,136,143,149,155,162,168,174,181,187,194,201,207,214,221,

%U 227,234,241,248,254,261,268,275,282,289,296,303,310,317,324,331,338

%N Numbers k such that A247914(k+1) = A247914(k) + 1.

%C Complement of A247915.

%H Clark Kimberling, <a href="/A247916/b247916.txt">Table of n, a(n) for n = 1..100</a>

%e A247914(n+1) - A247914(n) = (2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1,...), and a(n) is the position of the n-th 2.

%t \$RecursionLimit = Infinity; \$MaxExtraPrecision = Infinity;

%t z = 500; u[1] = 0; u[2] = 1; u[n_] := u[n] = u[n - 1] + u[n - 2]/(n - 2);

%t f[n_] := f[n] = Select[Range[z], Abs[(# + 1)/u[# + 1] - E] < n^-n &, 1];

%t u = Flatten[Table[f[n], {n, 1, z}]] (* A247914 *)

%t w = Differences[u]

%t f1 = Flatten[Position[w, 1]] (* A247915 *)

%t f2 = Flatten[Position[w, 2]] (* A247916 *)

%Y Cf. A247908, A247911, A247914, A247915.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Sep 27 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 15:27 EDT 2023. Contains 365826 sequences. (Running on oeis4.)