login
Numbers n such that n + A007953(n) contains the same digits as n.
5

%I #21 Oct 12 2024 15:37:20

%S 0,45,100,200,234,279,300,334,400,423,433,468,500,600,612,657,668,700,

%T 800,801,846,866,900,1000,1009,1134,1179,1216,1223,1303,1323,1368,

%U 1446,1512,1557,1612,1669,1701,1746,1761,1890,1900,1935,2000,2023,2034,2079

%N Numbers n such that n + A007953(n) contains the same digits as n.

%C A037124 is a subsequence for a(n) >= 100.

%C The digits do not have to appear the same number of times. - _Jens Kruse Andersen_, Sep 28 2014

%H Jens Kruse Andersen, <a href="/A247887/b247887.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) ~ n. More specifically, a(n) - n = O(n^k * log n) with k = log 9/log 10. (This bound is not tight.) - _Charles R Greathouse IV_, Oct 14 2014

%t A247887Q[k_] := Union[IntegerDigits[k + Total[#]]] == Union[#] & [IntegerDigits[k]];

%t Select[Range[0, 3000], A247887Q] (* _Paolo Xausa_, Oct 12 2024 *)

%o (PARI)

%o for(n=0,10^4,d=digits(n);ds=digits(n+sumdigits(n));if(vecsort(d,,8)==vecsort(ds,,8),print1(n,", ")))

%o (Magma) [n: n in [0..3000] | Set(Intseq(n+&+Intseq(n))) eq Set(Intseq(n))]; // _Bruno Berselli_, Oct 09 2014

%Y Cf. A007953, A052382, A037124.

%K nonn,base,easy

%O 1,2

%A _Derek Orr_, Sep 25 2014