%I #29 Mar 11 2024 23:10:51
%S 0,-10720,46144,-406944,27728000,421271200,2938887360,13857016544,
%T 50936525056,157077960480,424598062400,1035360742240,2323482102144,
%U 4869001213856,9632766324160,18144829893600,32760875409920,57003614246944,96008691963456,157097430355040
%N The 9th Hermite Polynomial evaluated at n: H_9(n) = 512*n^9 - 9216*n^7 + 48384*n^5 - 80640*n^3 + 30240*n.
%H Vincenzo Librandi, <a href="/A247854/b247854.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>.
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
%F G.f.: -x*(10720-153344*x+1350784*x^2-35160320*x^3-117890240* x^4-35160320*x^5+1350784*x^6-153344*x^7+10720*x^8)/(x-1)^10.
%F a(n) = 10*a(n-1)-45*a(n-2)+120*a(n-3)-210*a(n-4)+252*a(n-5)-210*a(n-6)+120*a(n-7)-45*a(n-8)+10*a(n-9)-a(n-10).
%t Table[512 n^9 - 9216 n^7 + 48384 n^5 - 80640 n^3 + 30240 n, {n, 0, 30}]
%o (PARI) a(n)=polhermite(9,n) \\ _Charles R Greathouse IV_, Jan 29 2016
%o (Python)
%o from sympy import hermite
%o def A247854(n): return hermite(9,n) # _Chai Wah Wu_, Jan 06 2022
%Y Cf. similar sequences listed in A247850.
%K sign,easy
%O 0,2
%A _Vincenzo Librandi_, Sep 26 2014