login
Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape N; triangle T(n,k), n>=0, read by rows.
5

%I #15 Feb 07 2017 10:15:32

%S 1,1,5,48,8,423,68,10,3082,832,84,8,18998,7624,1230,88,10,133083,

%T 65360,14390,1732,116,8,965175,555236,150876,23184,2196,108,6,6907447,

%U 4531744,1454292,275320,33807,2616,124,4,48357538,36466396,13354738,3012116,457360,46872,3086,104,2

%N Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape N; triangle T(n,k), n>=0, read by rows.

%C Sum_{k>0} k * T(n,k) = A247738(n).

%H Alois P. Heinz, <a href="/A247705/b247705.txt">Rows n = 0..160, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentomino">Pentomino</a>

%e T(3,1) = 8:

%e ._____. .___._.

%e | ._. | | ._| |

%e |_| |_| | | ._|

%e | ._| | | | | |

%e | | | |_|_| |

%e |_|___| (*4) |_____| (*4) .

%e Triangle T(n,k) begins:

%e 00 : 1;

%e 01 : 1;

%e 02 : 5;

%e 03 : 48, 8;

%e 04 : 423, 68, 10;

%e 05 : 3082, 832, 84, 8;

%e 06 : 18998, 7624, 1230, 88, 10;

%e 07 : 133083, 65360, 14390, 1732, 116, 8;

%e 08 : 965175, 555236, 150876, 23184, 2196, 108, 6;

%Y Row sums give A174249 or A233427(n,5).

%Y Column k=0 gives A247769.

%Y Cf. A247738.

%K nonn,tabf

%O 0,3

%A _Alois P. Heinz_, Sep 22 2014