%I #15 Feb 07 2017 10:15:32
%S 1,1,5,48,8,423,68,10,3082,832,84,8,18998,7624,1230,88,10,133083,
%T 65360,14390,1732,116,8,965175,555236,150876,23184,2196,108,6,6907447,
%U 4531744,1454292,275320,33807,2616,124,4,48357538,36466396,13354738,3012116,457360,46872,3086,104,2
%N Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape N; triangle T(n,k), n>=0, read by rows.
%C Sum_{k>0} k * T(n,k) = A247738(n).
%H Alois P. Heinz, <a href="/A247705/b247705.txt">Rows n = 0..160, flattened</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentomino">Pentomino</a>
%e T(3,1) = 8:
%e ._____. .___._.
%e | ._. | | ._| |
%e |_| |_| | | ._|
%e | ._| | | | | |
%e | | | |_|_| |
%e |_|___| (*4) |_____| (*4) .
%e Triangle T(n,k) begins:
%e 00 : 1;
%e 01 : 1;
%e 02 : 5;
%e 03 : 48, 8;
%e 04 : 423, 68, 10;
%e 05 : 3082, 832, 84, 8;
%e 06 : 18998, 7624, 1230, 88, 10;
%e 07 : 133083, 65360, 14390, 1732, 116, 8;
%e 08 : 965175, 555236, 150876, 23184, 2196, 108, 6;
%Y Row sums give A174249 or A233427(n,5).
%Y Column k=0 gives A247769.
%Y Cf. A247738.
%K nonn,tabf
%O 0,3
%A _Alois P. Heinz_, Sep 22 2014