login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of paths from (0,0) to the line x = n, each segment given by a vector (1,1), (1,-1), or (2,0), not crossing the x-axis, and including no horizontal segment on the x-axis.
3

%I #7 Sep 23 2014 16:42:27

%S 1,1,2,4,10,20,50,104,258,552,1362,2972,7306,16172,39650,88720,217090,

%T 489872,1196834,2719028,6634890,15157188,36949266,84799992,206549250,

%U 475894200,1158337650,2677788492,6513914634,15102309468,36718533570,85347160608

%N Number of paths from (0,0) to the line x = n, each segment given by a vector (1,1), (1,-1), or (2,0), not crossing the x-axis, and including no horizontal segment on the x-axis.

%C a(n) = sum of the numbers in row n of the triangle at A247629.

%H Clark Kimberling, <a href="/A247630/b247630.txt">Table of n, a(n) for n = 0..1000</a>

%F Conjecture: -(n+1)*(n-2)*a(n) -(n-1)*(n-4)*a(n-1) +2*(3*n-2)*(n-2)*a(n-2) +2*(3*n-5)*(n-3)*a(n-3) +(-n^2+7*n-2)*a(n-4) -(n-1)*(n-6)*a(n-5)=0. - _R. J. Mathar_, Sep 23 2014

%e First 9 rows:

%e 1

%e 0 ... 1

%e 1 ... 0 ... 1

%e 0 ... 3 ... 0 ... 1

%e 4 ... 0 ... 5 ... 0 ... 1

%e 0 ... 12 .. 0 ... 7 ... 0 ...1

%e 16 .. 0 ... 24 .. 0 ... 9 ... 0 ... 1

%e 0 ... 52 .. 0 ... 40 .. 0 ... 11 .. 0 ... 1

%e 68 .. 0 ... 116 . 0 ... 60 .. 0 ... 13 .. 0 ... 1

%e T(4,2) counts these 5 paths given as vector sums applied to (0,0):

%e (1,1) + (1,1) + (1,1) + (1,-1)

%e (1,1) + (1,1) + (2,0)

%e (1,1) + (1,1) + (1,-1) + (1,1)

%e (1,1) + (2,0) + (1,1)

%e (1,1) + (1,-1) + (1,1) + (1,-1)

%e a(4) = 4 + 0 + 5 + 0 + 1 = 10.

%t t[0, 0] = 1; t[1, 1] = 1; t[2, 0] = 1; t[2, 2] = 1; t[n_, k_] := t[n, k] = If[n >= 2 && k >= 1, t[n - 1, k - 1] + t[n - 1, k + 1] + t[n - 2, k], 0]; t[n_, 0] := t[n, 0] = If[n >= 2, t[n - 2, 0] + t[n - 1, 1], 0]; u = Table[t[n, k], {n, 0, 16}, {k, 0, n}]; TableForm[u] (* A247629 array *)

%t v = Flatten[u] (* A247629 sequence *)

%t Map[Total, u] (* A247630 *)

%Y Cf. A247629, A247623.

%K nonn,easy

%O 0,3

%A _Clark Kimberling_, Sep 21 2014