The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247460 Numbers k such that d(r,k) != d(s,k), where d(x,k) = k-th binary digit of x, r = {sqrt(2)}, s = {3*sqrt(2)}, and { } = fractional part. 2
 2, 4, 6, 12, 14, 18, 20, 22, 24, 26, 28, 35, 37, 41, 45, 47, 49, 52, 55, 60, 63, 65, 67, 69, 71, 77, 79, 83, 85, 88, 90, 92, 95, 98, 100, 102, 104, 106, 108, 110, 112, 117, 119, 121, 126, 129, 133, 135, 138, 143, 145, 150, 152, 155, 157, 159, 163, 166, 168 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Every positive integer lies in exactly one of the sequences A247459 and A247460. LINKS Clark Kimberling, Table of n, a(n) for n = 1..500 EXAMPLE {1*sqrt(2)} has binary digits 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1,... {3*sqrt(2)} has binary digits 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1,... so that a(1) = 2 and a(2) = 4. MATHEMATICA z = 200; r = FractionalPart[Sqrt[2]]; s = FractionalPart[3*Sqrt[2]]; u = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[r, 2, z]]; v = Flatten[{ConstantArray[0, -#[[2]]], #[[1]]}] &[RealDigits[s, 2, z]]; t = Table[If[u[[n]] == v[[n]], 1, 0], {n, 1, z}]; Flatten[Position[t, 1]]  (* A247459 *) Flatten[Position[t, 0]]  (* A247460 *) CROSSREFS Cf. A247459, A247455, A247454. Sequence in context: A271822 A067874 A015733 * A023187 A061012 A331620 Adjacent sequences:  A247457 A247458 A247459 * A247461 A247462 A247463 KEYWORD nonn,easy,base AUTHOR Clark Kimberling, Sep 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 08:42 EST 2020. Contains 332221 sequences. (Running on oeis4.)