login
Numbers m such that floor(m/2) is a square.
11

%I #45 Sep 24 2022 05:47:30

%S 0,1,2,3,8,9,18,19,32,33,50,51,72,73,98,99,128,129,162,163,200,201,

%T 242,243,288,289,338,339,392,393,450,451,512,513,578,579,648,649,722,

%U 723,800,801,882,883,968,969,1058,1059,1152,1153,1250,1251,1352,1353

%N Numbers m such that floor(m/2) is a square.

%C Union of A001105 and A058331.

%C Squares of the sequence are listed in A055792.

%H Jens Kruse Andersen, <a href="/A247375/b247375.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).

%F G.f.: x*( 1 + x - x^2 + 3*x^3 ) / ( (1 - x)^3*(1 + x)^2 ).

%F a(n) = 1 + ( 2*n*(n-1) + (2*n-3)*(-1)^n - 1 )/4.

%F a(n+1) = 1 + A213037(n).

%F a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n >= 5. - _Wesley Ivan Hurt_, Dec 18 2020

%F Sum_{n>=1} 1/a(n) = Pi^2/12 + coth(Pi/sqrt(2))*Pi/(2*sqrt(2)) + 1/2. - _Amiram Eldar_, Sep 24 2022

%t Select[Range[0, 1400], IntegerQ[Sqrt[Floor[#/2]]] &]

%t LinearRecurrence[{1,2,-2,-1,1},{0,1,2,3,8},70] (* _Harvey P. Dale_, Oct 21 2021 *)

%o (Magma) [n: n in [0..1400] | IsSquare(Floor(n div 2))];

%o (Sage) [n for n in [0..1400] if is_square(floor(n/2))]

%Y Cf. A001105, A055792, A058331, A213037.

%Y Cf. A130404 (numbers m such that floor(m/2) is a triangular number).

%K nonn,easy

%O 0,3

%A _Bruno Berselli_, Sep 15 2014