THE NUMBER OF BINARY $n \times m$ MATRICES WITH AT MOST k 1'S IN EACH ROW OR COLUMN

RICHARD J. MATHAR

Abstract

We count the the number of binary $(0,1)$-matrices with a given limit k on the number of 1's in each row and each column. The computation is recursive starting from the simplest case of the matrix with a single row.

1. SCOPE

Definition 1. Let $A_{n, m, k}$ be the number of (0,1)-matrices with n rows, m columns and no more than k 1's in each of the rows and in each of the columns.
Example 1. The simplest example is

$$
\begin{equation*}
A_{n, m, 0}=1, \tag{1}
\end{equation*}
$$

because allowing no 1's in the matrices means only the matrix with all elements equal to 0 is admitted.

Example 2. The number of binary matrices with a single column and no more than k 1's in that column is

$$
\begin{equation*}
A_{n, 1, k}=\sum_{f=0}^{k}\binom{n}{f} \tag{2}
\end{equation*}
$$

because the f 1's may be freely distributed over the column.
Example 3. If the number of rows and the number of columns are both not larger than k, there is effectively no constraint on the placement of 1's:

$$
\begin{equation*}
A_{n, m, k}=2^{n m}, \quad n \leq k \text { and } m \leq k . \tag{3}
\end{equation*}
$$

Summing its matrix elements down columns, each (0,1)-matrix can be categorized by a frequency vector with elements c_{f} counting the number of columns with f 1's, i.e., by the number c_{0} of columns without any 1 , the number c_{1} of columns with one 1 , and so on. The natural constraints for matrices restricted to $k 1$'s are

$$
\begin{gather*}
\sum_{f=0}^{k} c_{f}=m \tag{4}\\
0 \leq c_{f} \leq m, \quad \forall f . \tag{5}
\end{gather*}
$$

Definition 2. Let $A_{n, m, k}\left(c_{0}, c_{1}, \ldots c_{k}\right)$ be the number of (0,1)-matrices with n rows, m columns, no more than k 1's in each row and each column, and with exactly c_{f} columns with f 1's.

[^0]Example 4. The 2×3 matrix

$$
\left(\begin{array}{lll}
0 & 1 & 0 \tag{6}\\
0 & 1 & 0
\end{array}\right)
$$

has two columns without 1, no column with one 1, and one column with two 1's, so $c_{0}=2, c_{1}=0, c_{2}=1$.

Example 5. In a matrix with 1 row

$$
A_{1, m, k}\left(c_{0}, c_{1}, \ldots c_{k}\right)= \begin{cases}\binom{m}{c_{1}}, & c_{1} \leq k \text { and } c_{f}=0 \forall f>1, \text { and } c_{0}+c_{1}=m \tag{7}\\ 0, & \text { otherwise }\end{cases}
$$

because we allow up to k 1's in that row and may distribute them over the m columns.
Definition 3. Let $C(n, k)$ denote the number of compositions of n into k nonnegative parts.

Remark 1. The number $C(n, k)$ equals the number of compositions of $n+k$ into k positive parts. The Maple program in the Appendix generates the compositions into non-negative parts by (i) calling the function that generates positive parts and (ii) subtracting 1 from each of the parts.

This frequency statistics refines the full count of matrices:

$$
\begin{equation*}
A_{n, m, k}=\sum_{C(m, k+1)=0^{c_{0}} 1^{c_{1} \cdots k^{c_{k}}}} A_{n, m, k}\left(c_{0}, c_{1}, \ldots c_{k}\right) . \tag{8}
\end{equation*}
$$

Example 6. The admitted matrices with $m=4$ columns and up to $k=2$ 1's per column may separately by counted by the compositions $4=4+0+0=3+1+0=$ $2+2+0=1+3+0=\cdots=0+0+4$, i.e. the matrices with 4 columns without 1 's, the matrices with 3 columns without 1's and 1 column with one 1 , the matrices with 2 columns without 1's and 2 columns with one 1 etc and eventually the matrices with 4 columns of two 1 's.

2. Recurrence

The number of admitted matrices with n rows is computed by considering the number of admitted matrices with $n-1$ rows and the number of ways of entering a total of up to k 1's in the final row distributed over the number of columns that have not yet exausted the upper limit of k in their count. The recurrence is anchored at Equation (7). We add a total of $N=d_{0}+d_{1}+\cdots+d_{k-1} 1$'s in the bottom row, d_{0} of these placed at columns that had no 1 's in the previous rows, d_{1} placed at columns that hat one 1 in the previous rows and so on. The lower index of the d is limited to $k-1$ because we cannot insert 1's into columns that have already k 1's in the previous rows:

$$
\begin{align*}
& A_{n, m, k}\left(c_{0}-d_{0}, c_{1}-d_{1}+d_{0}, c_{2}-d_{2}+d_{1}, \ldots, c_{k}+d_{k-1}\right)= \tag{9}\\
& \sum_{0 \leq N \leq k} \sum_{C(N, k)=0^{d_{0}}} \prod_{1^{d_{1}} \ldots(k-1)^{d_{k-1}}} \prod_{f=0}^{k-1}\binom{c_{f}}{d_{f}} A_{n-1, m, k}\left(c_{0}, c_{1}, \ldots, c_{k}\right) .
\end{align*}
$$

The binomial factors on the right hand side count the number of ways of distributing $d_{f} 1$'s in row n over the c_{f} columns that still admit additional 1 's. The frequency vector on the left hand side shows that (i) adding d_{0} 1's to columns that had no

Table 1. The number $A_{n, m, 1}$ of $n \times m$ binary matrices with at most one 1 in each row or column.

n	1	2	3	4	5	6	7	8	9
1	2								
2	3	7							
3	4	13	34						
4	5	21	73	209					
5	6	31	136	501	1546				
6	7	43	229	1045	4051	13327			
7	8	57	358	1961	9276	37633	130922		
8	9	73	529	3393	19081	93289	394353	1441729	
9	10	91	748	5509	36046	207775	1047376	4596553	17572114

Table 2. The number $A_{n, m, 2}$ of $n \times m$ binary matrices with at most two 1's in each row or column.

n	1	2	3	4	5	6	7	8	9
1	2								
2	4	16							
3	7	49	265						
4	11	121	1081	7343					
5	16	256	3481	37441	304186				
6	22	484	9367	149311	1859926	17525812			
7	29	841	22009	490631	8871241	124920349	1336221251		
8	37	1369	46585	1386781	34589641	694936117	10876066069	129980132305	
9	46	2116	90811	3481543	114849676	3146625406	69238840861	1189279402021	15686404067098

1's in the previous rows diminishes the number of columns without 1's by d_{0} and increases the number of columns with one 1 by d_{0}, that (ii) adding $d_{1} 1$'s to columns that had a single 1 in the previous rows diminishes the number of columns with a single 1 by d_{1} and increases the number of columns with two 1 's by d_{1}, and so on.

Remark 2. The implementation of (9) in the Maple program in the Appendix works with the reduced variables $c_{0}^{\prime} \equiv c_{0}-d_{0}, c_{f}^{\prime} \equiv c_{f}-d_{f}+d_{f-1}$ where $1 \leq f<k$ and $c_{k}^{\prime}=c_{k}+d_{k-1}$.

3. Results

The numbers $A_{n, m, k}$ are collected for $1 \leq k \leq 4$ in tables 1-4. Transposition does not effect the constraints on the maximum number of 1's, so these tables are symmetric $A_{n, m, k}=A_{m, n, k}$ and need only to be shown in the range $1 \leq m \leq n$.

On the diagonal of Table 1 we recognize the $A_{n, n, 1}$ of [1, A002720]. The column $m=1$ in Table 1 is a simple consequence of the fact that allowing a single 1 in a binary $n \times 1$ matrix allows either no one or allows that 1 in any of the n rows, $A_{n, 1,1}=n+1$.

On the diagonal of Table 2 we recognize the $A_{n, n, 2}$ of [1, A197458]. The column $m=1$ in that table shows [1, A000124] according to (2).

The column $m=1$ in Table 3 shows [1, A000125] according to (2).

TABLE 3. The number $A_{n, m, 3}$ of $n \times m$ binary matrices with at most three 1's in each row or column.

n	1	2	3	4	5	6	7	8
1	2							
2	4	16						
3	8	64	512					
4	15	225	3375	41503				
5	26	676	17576	386321	6474726			
6	42	1764	74088	2727835	79466726	1709852332		
7	64	4096	262144	15164605	724148776	26481406624	702998475376	
8	93	8649	804357	69214125	5103305401	300685003773	13310401771129	423669066884177
9	130	16900	2197000	268889923	29060188546	2608792241650	183396313726480	9574251908678125

Table 4. The number $A_{n, m, 4}$ of $n \times m$ binary matrices with at most four 1's in each row or column.

n	1	2	3	4	5	6		7	
1	2								
2	4	16							
3	8	64	512						
4	16	256	4096	65536					
5	31	961	29791	923521	24997921				
6	57	3249	185193	10556001	532799101	21252557377			
7	99	9801	970299	96059601	8616972631	628094733099	34215495252681		
8	163	26569	4330747	705911761	106617548761	13564846995883	1332291787909909	944734	
9	256	65536	16777216	4294967296	1037636664241	218509119324511	36998073025266151	46776969	

$A_{n, n,\lfloor n / 2\rfloor}$ are in [1, A247158]. The hyperdiagonal $A_{n, n, n-1}$ yields [1, A048291], which means if a $n \times n$ matrix has at most $n-11$'s, there is at least one zero in each row or column, and flipping the elements of the matrices counts also the matrices with at least one 1 and therefore no fully blanked zero.

Appendix A. Maple Implementation

```
interface(quiet=true) :
# Compositions of n into k parts, each part >=0.
# @return A list of sublists, where each sublist is a composition of n and contains k nonnegative eleme
nonnCompo := proc(n::integer,k::integer)
    local c,co,e;
    # Empty list initially
    c := [] ;
    # Generate the compositions of n+k with k positive elements.
    # Generate the final list by subtracting 1 from each element.
    for co in combinat[composition] ( }\textrm{n}+\textrm{k},\textrm{k}\mathrm{ ) do
                    [seq(e-1,e=co)] ;
            c := [op(c),%] ;
    end do:
    return c;
end proc:
```

```
# Number of n by m matrices with at most k 1's in each row and column
# @param n Number of rows
# @param m Number of columns
# @param k Upper limit of 1's in individual rows and columns
# @param freq freq[1] the number of columns with no 1. freq[i] the
    number of columns with i-1 ones.
A := proc(n::integer,m::integer,k::integer,freq::list)
    local f,a,N,gr,contrib,transi,prefre,mu;
    option remember;
    # If the sum of the frequencies of 1's doesn't add up to the number
    # of columns (m), there is no such matrix.
    if add(f, f= freq) <> m then
    return 0 ;
    end if;
    # At most k 1's in each column, so the frequencies from 0 to k need to match.
    if nops(freq) <> k+1 then
    error "k is %d but freq has %d elements",k,nops(freq)
    end if;
    # If any frequency of 1's in a column is negative, there is no such matrix.
    for f in freq do
        if f < 0 then
            return 0;
        end if;
    end do;
    if n = 1 then
        # Handle frequencies of a matrix with a single row.
        # 1 row, need only list[1]+list[2], others zero
        # Todo: this might be generalized to demand that freq(i)=0 for i>n+1.
        if nops(freq) > 2 then
                        if add(op(f,freq),f=3..nops(freq)) <> 0 then
                        return 0 ;
                end if;
        end if ;
        # in the first row, the total number of 1's cannot be larger than k
        if nops(freq) > 1 then
                if op(2,freq) > k then
                    return 0 ;
                end if;
        end if;
        # list[1] the number of zeros out of m
        return binomial(m,op(1,freq)) ;
    else
        # sum up the number of matrices in a.
        a := 0 ;
        # recousre to A(n-1,m,k,freqprime)
        # add R=0: 1 way A(n-1,m,k,[c0,c1,c2..,ck-1]) >> A(n,m,k,[c0,c1,\ldotsck-1])
        # add R=1: add 1 to c0' in binomial(c0',1) ways or add 1 to c1' in binomial(c1',1) ways
        # C(c0,1)*A(n-1,m,k,[c0, c1,\ldots,ck-1]) + C (c1,1)*A(n-1,m,k,[c0, c1, ...ck-1])+...
        # add R=2: add 2 to c0' in binomial(c0',2) ways or add 2 to c1' in binomial(c1',2) ways
        # or A(n,m,k,[c0,c1+2,\ldots.]
        # or mixed add 1 to c0' and 1 to c1' in binomial(c0',1)*binomial(c1',1)*A(n-1,m,k,[c0,c
        # A(n,m,k,[c0+1,c1+1,..]
```

$\# \mathrm{C}(\mathrm{c} 0,1) * \mathrm{~A}(\mathrm{n}-1, \mathrm{~m}, \mathrm{k},[\mathrm{c} 0, \mathrm{c} 1, \ldots, \mathrm{ck}-1])+\mathrm{C}(\mathrm{c} 1,1) * \mathrm{~A}(\mathrm{n}-1, \mathrm{~m}, \mathrm{k},[\mathrm{c} 0, \mathrm{c} 1, \ldots \mathrm{ck}-1])+\ldots$
$\# \mathrm{~N}$ is the number of 1 's in row n in the range $0<=\mathrm{N}<=\mathrm{k}$. for N from 0 to k do
\# That number of 1's can be split into gr[1] added to the columns with \# no ones yet, into gr[2] added to the columns with 1 ones yet,..
\# added to the columns with k-1 ones yet. There cannot be 1's added to
\# columns that already havy k ones, so this splitting of N is only
\# into k groups, the last argument to nonnCompo.
for gr in nonnCompo(N, k) do
\# last argument is not $k+1$, because we cannot add to freq[-1]
\# The frequencies F[] of the previous matrix with $\mathrm{n}-1$ rows undergo the \# $\mathrm{F}[0] \rightarrow \mathrm{F}[0]-\mathrm{gr}[0], \mathrm{F}[1] \rightarrow \mathrm{F}[1]+\mathrm{gr}[0]-\mathrm{gr}[1], \ldots \mathrm{F}[\mathrm{k}-1]->\mathrm{F}[\mathrm{k}-1]+\mathrm{gr}[\mathrm{k}-2$
\# $\mathrm{F}[\mathrm{k}]$-> $\mathrm{F}[\mathrm{k}]+\mathrm{gr}[\mathrm{k}-1]$.
\# Valid transitions demand that of course the $\mathrm{F}[\mathrm{i}]$ are $>=0$, but
\# (not to be overlooked) that all $\mathrm{F}[\mathrm{i}]-\mathrm{gr}[\mathrm{i}]$ are also $>=0,0<=\mathrm{i}<\mathrm{k}$.
\# Now Maple indices are all 1 up:
\# $\mathrm{F}[1]->\mathrm{F}[1]-\mathrm{gr}[1], \mathrm{F}[2] \rightarrow \mathrm{F}[2]+\mathrm{gr}[1]-\mathrm{gr}[2], \ldots \mathrm{F}[\mathrm{k}]->\mathrm{F}[\mathrm{k}]+\mathrm{gr}[\mathrm{k}-1]-\mathrm{gr}$
\# $F[k+1]$ $\rightarrow F[k+1]+g r[k]$ and all $F[i]-g r[i]>=0,1<=i<=k$.
\# And the frequencies $f[]$ with the matrix of n rows
\# are by solving to the right hand sides. $f[1]=F[1]-g r[1], f[i]=F[i]-g r$
\# and $f[k+1]=F[k+1]+g r[k]$.
\# $f[1]+\operatorname{gr}[1] \rightarrow f[1] . f[2]+g r[2]-g r[1] ~ \rightarrow f[2] \ldots f[k]+g r[k]-g r[k-1]->$
\# $\mathrm{f}[\mathrm{k}+1]-\mathrm{gr}[\mathrm{k}] \rightarrow \mathrm{f}[\mathrm{k}+1]$.
prefre := [op(1,freq)+op(1,gr),
seq(op(f,freq)+op(f,gr)-op(f-1,gr),f=2..k),
op (-1,freq)-op(-1,gr)] ;
transi := true;
for f from 1 to k do
if $o p(f, p r e f r e)<o p(f, g r)$ then transi := false; break;
end if;
end do:
if transi then
mu := mul(binomial(op(i,prefre),op(i,gr)), i=1..nops(gr)) ; if mu > 0 then contrib := mu *procname(n-1,m,k,prefre) ; a := a+ contrib ;
end if;
end if;
end do:
end do:
return a;
end if;
end proc:
\# n by m binary matrices with at most k 1's in each row or column
Agen := proc(n::integer,m::integer, $\mathrm{k}:$:integer)
local a,freq;
a := 0 ;
\# All possible combinations of sum(frequ)=m
\# freq[1]=c_0, freq[2]=c_1,... freq[k+1] = c_k

```
    for freq in nonnCompo(m,k+1) do
            a := a+ A(n,m,k,freq) ;
    end do:
    return a;
end proc:
# n by n binary matrices with at most k 1's in each row or column
Amain := proc(n::integer,k::integer)
    return Agen(n,n,k) ;
end proc:
A002720 := proc(n)
    Amain(n,1) ;
end proc:
seq(A002720(n),n=1..5) ;
A197458 := proc(n)
    Amain(n,2) ;
end proc:
seq(A197458(n),n=1..5) ;
A247158 := proc(n)
    Amain(n,floor(n/2)) ;
end proc:
seq(A247158(n),n=1..5) ;
Alatex := proc(k::integer)
    local n,m ;
    for n from 1 to 9 do
    printf("%d ",n) ;
    for m from 1 to n do
                                    printf("& %d ", Agen(n,m,k)) ;
            end do:
            printf("\\\\\\n") ;
    end do:
end proc:
Alatex(1) ;
Alatex(2) ;
Alatex(3) ;
Alatex(4) ;
```


References

1. Neil J. A. Sloane, The On-Line Encyclopedia Of Integer Sequences, Notices Am. Math. Soc. 50 (2003), no. 8, 912-915, http://oeis.org/. MR 1992789 (2004f:11151) URL: http://www.mpia.de/~mathar

Max-Planck Institute of Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

[^0]: Date: November 23, 2014.
 2010 Mathematics Subject Classification. 05A05, 15B35.
 Key words and phrases. Combinatorics, Binary Matrices.

