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We use the definition of  T(n, k) =  n + 1
k

-
k + 1

2
  for  1 ≤ n  and  1 ≤ k ≤  1

2
 8 n + 1 - 1 = row(n), and  

S(n, k) = T(n, k) - T(n, k + 1)  from A237591 and A237593, respectively.
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Let  i, n ∈ ℕ  with n ≥ 3 and  i ≥ 1.  Equivalent are:

(1) n = 2i-1⨯ p, where  1 < 2i ≤ row(n), p  is a prime and  p > row(n).

(2) (i) T(n, 2i) = T(n - 1, 2i) + 1,

(ii) for all k ≠ 2i, 1 < k ≤ row(n), T(n, k) = T(n - 1, k),

(iii) σ(n) = 2⨯n - 2⨯T(n, 2i).
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The symmetric representation of  σ(n)  consists of two regions of width 1 each with  2k - 1  upper/right 

boundary sides precisely when  n = 2k-1⨯ p  where  1 ≤ 2k  ≤ row(n) < p  for some  k ∈ ℕ  and prime  p.
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The symmetric representation of  σ(n)  consists of two regions of width 1  that meet at the diagonal, so 

that  σ(n) = 2⨯n - 2, precisely when  n = 2(2m-1)⨯22
m

+ 1  where  22
m

+ 1  is a Fermat prime.  

This sequence of numbers  n  is:  3, 10, 136, 32896, 2147516416, …[?]… (A191363).
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(2.i) Tn, 2i = 
2i-1⨯p + 1

2i
-
2i + 1

2
= 

p - 1

2
 -  2i-1 +  1

2i
 = 

p - 1

2
 -  2i-1 + 1

Tn - 1, 2i = 
2i-1⨯p - 1 + 1

2i
-
2i + 1

2
= 

p - 1

2
 -  2i-1.

(2.ii) For any  1 < k ≤ row(n), let n = q ⨯ k + d  with  q, k ∈ ℕ  and 0 ≤ d < k.
If k is odd, simple calculations establish the equation.

If k is even and has an odd factor, then the three cases 0 < d < k
2
, k
2
 < d < k

and d = k
2
 need to be considered.

Finally, if k = 2 j with j ≥ 1 and j ≠ i, considering the two cases 1 ≤ j < i and j > i,

the last with the three subcases 1 < d < 2 j-1, 2 j-1 < d < 2 j and d = 2 j-1 establish the
equation.

(2.iii) σ(n)  =  σ2i-1⨯p  =  2i - 1⨯(p + 1)  =  2i ⨯p + 2i - p - 1  and

Tn, 2i = 
2i-1⨯p + 1

2i
-
2i + 1

2
= 

p - 1

2
 -  2i-1 +  1

2i
 = 

p - 1

2
 -  2i-1 + 1.
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Suppose that  n = q ⨯ 2i-1 + d  with  q ∈ ℕ  and  0 ≤ d < 2i-1.  From assumption (2.i) we get:

Tn, 2i  = 
q⨯2i-1+ d + 1

2i
-
2i + 1

2
 =  

q - 1

2
+
d + 1

2i
 - 2i-1



Tn - 1, 2i  =  
q⨯2i-1+ d - 1 + 1

2i
-
2i + 1

2
 =  

q - 1

2
+
d

2i
 - 2i-1

so that  
q - 1

2
+
d + 1

2i
 = 

q - 1

2
+
d

2i
 + 1  must hold.  

If  q  is odd, then   d + 1
2i

 =  d

2i
 + 1, so that  d = 0.

If  q  is even, then   -1

2
+
d + 1

2i
 =  -1

2
+
d

2i
 + 1  requires  d = 2i-1, a contradiction.

Therefore, n = q ⨯ 2i-1 for some odd  q ∈ ℕ.

If  n  has an odd divisor  k ≤ row(n)  then assumption (2.ii)  T(n, k) = T(n - 1, k)  implies   n + 1
k

 =  n
k
  

which is a contradiction.  Therefore, any odd divisor of  n  is larger than  row(n).

From  Tn, 2i  =  Tq⨯2i-1, 2i  =  
q⨯2i-1+ 1

2i
-
2i + 1

2
  =  

q - 1

2
 - 2i-1 + 1, assumption (2.iii) implies

σ(n)  =  2⨯n - 2⨯Tn, 2i  =  q⨯2i - 2 ⨯ 
q - 1

2
- 2i-1 + 1  =  q⨯2i - q + 2i - 1  =  2i - 1 ⨯ (q + 1) .  Since  

σ2i-1⨯q  =  σ2i-1 ⨯ σ(q)  =  2i - 1 ⨯ (q + 1),  σ(q)  =  q + 1  so that  q  must be a prime.
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Observe that for any  n ∈ ℕ,  T(n, 1) =  n, T(n, 2) =   n
2
 - 1  &  S(n, 1) =  n

2
 + 1

Case 1:  k = 1  and  n  is a prime.
Since  n  is odd,   S(n, 1) = S(n - 1, 1), i.e., the region is terminated with the first horizontal leg.

That leg has length  n + 1
2

  and width 1.

Case 2:  k > 1  and  n = 2k-1⨯ p
Since  n  is even,  S(n, 1) = S(n - 1, 1) + 1, starting a region of width 1. 

Since  T(n, i) = T(n - 1, i), for all 1 < i < 2k , the region continues with width 1

for  2k - 1  steps.
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Observe that  row2(2m-1)⨯22
m

+ 1 = 22
m

 and  T 2(2m-1)⨯22
m

+ 1, 22
m

 = 1.

The assertions now follow from the Theorem.

2 ���  two regions width one = 2^(k-1)*p(n) proof.nb


