Notations

We use the definition of $T(n, k) = \left\lceil \frac{n+1}{k} - \frac{k+1}{2} \right\rceil$ for $1 \le n$ and $1 \le k \le \left\lfloor \frac{1}{2} \left(\sqrt{8n+1} - 1 \right) \right\rfloor = row(n)$, and S(n, k) = T(n, k) - T(n, k+1) from A237591 and A237593, respectively.

Lemma

Let i, $n \in \mathbb{N}$ with $n \ge 3$ and $i \ge 1$. Equivalent are:

- (1) $n = 2^{i-1} \times p$, where $1 < 2^i \le row(n)$, p is a prime and p > row(n).
- (2) (i) $T(n, 2^i) = T(n 1, 2^i) + 1$,
 - (ii) for all $k \neq 2^i$, $1 < k \le row(n)$, T(n, k) = T(n 1, k),
 - (iii) $\sigma(n) = 2 \times n 2 \times T(n, 2^i).$

Theorem

The symmetric representation of $\sigma(n)$ consists of two regions of width 1 each with $2^k - 1$ upper/right boundary sides precisely when $n = 2^{k-1} \times p$ where $1 \le 2^k \le row(n) < p$ for some $k \in \mathbb{N}$ and prime p.

Corollary

The symmetric representation of $\sigma(n)$ consists of two regions of width 1 that meet at the diagonal, so that $\sigma(n) = 2 \times n - 2$, precisely when $n = 2^{(2^m - 1)} \times (2^{2^m} + 1)$ where $2^{2^m} + 1$ is a Fermat prime. This sequence of numbers n is: 3, 10, 136, 32896, 2147516416, ...[?]... (A191363).

Proof of Lemma " $(1) \Rightarrow (2)$ "

(2.i)
$$T(n, 2^{i}) = \left\lceil \frac{2^{i-1} \times p + 1}{2^{i}} - \frac{2^{i} + 1}{2} \right\rceil = \frac{p-1}{2} - 2^{i-1} + \left\lceil \frac{1}{2^{i}} \right\rceil = \frac{p-1}{2} - 2^{i-1} + 1$$
$$T(n-1, 2^{i}) = \left\lceil \frac{2^{i-1} \times p - 1 + 1}{2^{i}} - \frac{2^{i} + 1}{2} \right\rceil = \frac{p-1}{2} - 2^{i-1}.$$

(2.ii) For any $1 < k \le row(n)$, let $n = q \times k + d$ with $q, k \in \mathbb{N}$ and $0 \le d < k$. If k is odd, simple calculations establish the equation. If k is even and has an odd factor, then the three cases $0 < d < \frac{k}{2}, \frac{k}{2} < d < k$ and $d = \frac{k}{2}$ need to be considered.

Finally, if $k = 2^j$ with $j \ge 1$ and $j \ne i$, considering the two cases $1 \le j < i$ and j > i, the last with the three subcases $1 < d < 2^{j-1}$, $2^{j-1} < d < 2^j$ and $d = 2^{j-1}$ establish the equation.

(2.iii)
$$\sigma(n) = \sigma(2^{i-1} \times p) = (2^i - 1) \times (p+1) = 2^i \times p + 2^i - p - 1$$
 and
$$T(n, 2^i) = \left[\frac{2^{i-1} \times p + 1}{2^i} - \frac{2^{i+1}}{2}\right] = \frac{p-1}{2} - 2^{i-1} + \left[\frac{1}{2^i}\right] = \frac{p-1}{2} - 2^{i-1} + 1.$$

Proof of Lemma " $(2) \Rightarrow (1)$ "

Suppose that $n = q \times 2^{i-1} + d$ with $q \in \mathbb{N}$ and $0 \le d < 2^{i-1}$. From assumption (2.i) we get: $T(n, 2^i) = \left\lceil \frac{q \times 2^{i-1} + d + 1}{2^i} - \frac{2^i + 1}{2} \right\rceil = \left\lceil \frac{q-1}{2} + \frac{d+1}{2^i} \right\rceil - 2^{i-1}$

$$T(n-1, 2^{i}) = \left\lceil \frac{q \times 2^{i-1} + d - 1 + 1}{2^{i}} - \frac{2^{i} + 1}{2} \right\rceil = \left\lceil \frac{q-1}{2} + \frac{d}{2^{i}} \right\rceil - 2^{i-1}$$

so that $\left\lceil \frac{q-1}{2} + \frac{d+1}{2^i} \right\rceil = \left\lceil \frac{q-1}{2} + \frac{d}{2^i} \right\rceil + 1$ must hold.

If q is odd, then $\left\lceil \frac{d+1}{2^i} \right\rceil = \left\lceil \frac{d}{2^i} \right\rceil + 1$, so that d = 0.

If q is even, then $\left\lceil \frac{-1}{2} + \frac{d+1}{2^i} \right\rceil = \left\lceil \frac{-1}{2} + \frac{d}{2^i} \right\rceil + 1$ requires $d = 2^{i-1}$, a contradiction.

Therefore, $n = q \times 2^{i-1}$ for some odd $q \in \mathbb{N}$.

If n has an odd divisor $k \le row(n)$ then assumption (2.ii) T(n, k) = T(n - 1, k) implies $\left\lceil \frac{n+1}{k} \right\rceil = \left\lceil \frac{n}{k} \right\rceil$ which is a contradiction. Therefore, any odd divisor of n is larger than row(n).

From
$$T(n, 2^i) = T(q \times 2^{i-1}, 2^i) = \left\lceil \frac{q \times 2^{i-1} + 1}{2^i} - \frac{2^i + 1}{2} \right\rceil = \frac{q-1}{2} - 2^{i-1} + 1$$
, assumption (2.iii) implies $\sigma(n) = 2 \times n - 2 \times T(n, 2^i) = q \times 2^i - 2 \times \left(\frac{q-1}{2} - 2^{i-1} + 1\right) = q \times 2^i - q + 2^i - 1 = \left(2^i - 1\right) \times (q+1)$. Since $\sigma(2^{i-1} \times q) = \sigma(2^{i-1}) \times \sigma(q) = \left(2^i - 1\right) \times (q+1)$, $\sigma(q) = q+1$ so that q must be a prime.

Proof of Theorem

Observe that for any $n \in \mathbb{N}$, T(n, 1) = n, $T(n, 2) = \left\lceil \frac{n}{2} \right\rceil - 1 \& S(n, 1) = \left\lfloor \frac{n}{2} \right\rfloor + 1$

Case 1: k = 1 and n is a prime.

Since n is odd, S(n, 1) = S(n - 1, 1), i.e., the region is terminated with the first horizontal leg. That leg has length $\frac{n+1}{2}$ and width 1.

Case 2: k > 1 and $n = 2^{k-1} \times p$ Since n is even, S(n, 1) = S(n - 1, 1) + 1, starting a region of width 1.

Since T(n, i) = T(n - 1, i), for all $1 < i < 2^k$, the region continues with width 1 for $2^k - 1$ steps.

Proof of Corollary

Observe that $row(2^{(2^m-1)}*(2^{2^m}+1)) = 2^{2^m}$ and $T(2^{(2^m-1)}*(2^{2^m}+1)), 2^{2^m}) = 1.$

The assertions now follow from the Theorem.