login
Decimal expansion of 'a', an auxiliary constant associated with the asymptotic probability of success in the secretary problem when the number of applicants is uniformly distributed.
2

%I #14 Jan 17 2020 05:52:22

%S 2,1,1,9,8,2,4,4,0,9,8,9,2,0,6,3,6,4,9,4,6,4,0,0,5,3,8,3,0,0,7,4,0,9,

%T 1,5,4,5,5,4,4,6,3,9,6,3,2,5,3,4,1,9,8,5,4,0,9,2,0,2,7,5,4,2,6,7,6,2,

%U 7,7,4,3,8,7,1,8,5,4,8,7,9,8,2,3,9,8,7,3,8,6,2,6,6,3,0,3,2,3,8,9

%N Decimal expansion of 'a', an auxiliary constant associated with the asymptotic probability of success in the secretary problem when the number of applicants is uniformly distributed.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15 Optimal stopping constants, p. 361.

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants.</a> p. 45.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/SultansDowryProblem.html">Sultan's Dowry Problem.</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Secretary_problem">Secretary problem</a>.

%F e^a*(1 - gamma - log(a) + Ei(-a)) - (gamma + log(a) - Ei(a)) = 1, where gamma is Euler's constant and Ei is the exponential integral function.

%e 2.119824409892063649464005383007409154554463963253419854092...

%t a /. FindRoot[E^a*(1 - EulerGamma - Log[a] + ExpIntegralEi[-a]) - (EulerGamma + Log[a] - ExpIntegralEi[a]) == 1, {a, 2}, WorkingPrecision -> 100] // RealDigits // First

%Y Cf. A246665.

%K nonn,cons,easy

%O 1,1

%A _Jean-François Alcover_, Sep 01 2014