The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246052 Triangle read by rows: denominator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2), 0<=k<=n. 5

%I #11 Aug 18 2014 16:56:09

%S 2,2,2,2,7,2,2,62,62,2,2,381,381,381,2,2,5110,365,365,5110,2,2,

%T 1414477,2828954,1414477,2828954,1414477,2,2,1720110,49146,573370,

%U 573370,49146,1720110,2,2,16931177,50793531,1638501,118518239,1638501,50793531,16931177,2

%N Triangle read by rows: denominator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2), 0<=k<=n.

%C Conjecture: A240978(n) divides T(n,k) for k in (1..n-1) and n>=2.

%e 2

%e 2, 2

%e 2, 7, 2

%e 2, 62, 62, 2

%e 2, 381, 381, 381, 2

%e 2, 5110, 365, 365, 5110, 2

%p h := x -> Zeta(2*x)*(4^x-2);

%p A246052 := (n, k) -> denom(h(n-k)*h(k)/h(n));

%p seq(print(seq(A246052(n, k), k=0..n)), n=0..8);

%o (Sage)

%o h = lambda n: zeta(2*n)*(4^n-2)

%o A246052 = lambda n, k: (h(n-k)*h(k)/h(n)).denominator()

%o for n in range(8): [A246052(n, k) for k in (0..n)]

%Y Cf. A246051 (numerators), A240978, A246053.

%K nonn,frac,tabl

%O 0,1

%A _Peter Luschny_, Aug 11 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 02:04 EDT 2024. Contains 372615 sequences. (Running on oeis4.)