This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245936 Limit-reverse of the Kolakoski sequence (A000002), with first term as initial block. 2
 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Suppose S = (s(0),s(1),s(2),...) is an infinite sequence such that every finite block of consecutive terms occurs infinitely many times in S.  (It is assumed that A006337 is such a sequence.)  Let B = B(m,k) = (s(m-k),s(m-k+1),...,s(m)) be such a block, where m >= 0 and k >= 0.  Let m(1) be the least i > m such that (s(i-k),s(i-k+1),...,s(i)) = B(m,k), and put B(m(1),k+1) = (s(m(1)-k-1),s(m(1)-k),...,s(m(1))).  Let m(2) be the least i > m(1) such that (s(i-k-1),s(i-k),...,s(i)) = B(m(1),k+1), and put B(m(2),k+2) = (s(m(2)-k-2),s(m(2)-k-1),...,s(m(2))).  Continuing in this manner gives a sequence of blocks B(m(n),k+n).  Let B'(n) = reverse(B(m(n),k+n)), so that for n >= 1, B'(n) comes from B'(n-1) by suffixing a single term; thus the limit of B'(n) is defined; we call it the "limit-reverse of S with initial block B(m,k)", denoted by S*(m,k), or simply S*.  (Since A000002 has offset 1, the above definition is adapted accordingly, so that s(n) = A000002(n+1) for n >= 0.) ... The sequence (m(i)), where m(0) = 1, is the "index sequence for limit-reversing S with initial block B(m,k)" or simply the index sequence for S*, as in A245937. LINKS EXAMPLE S = A000002 (re-indexed to start with s(0) = 1, with B = (s(0)); that is, (m,k) = (0,0); S = (1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,...) B'(0) = (1) B'(1) = (1,2) B'(2) = (1,2,1) B'(3) = (1,2,1,1) B'(4) = (1,2,1,1,2) B'(5) = (1,2,1,1,2,2) S* = (1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1,...), with index sequence (1, 4, 7, 16, 25, 31, 43, 61, 70, 88, 97, 115,...) MATHEMATICA z = 110; seqPosition2[list_, seqtofind_] := Last[Last[Position[Partition[list, Length[#], 1], Flatten[{___, #, ___}], 1, 2]]] &[seqtofind]; n = 32; s = Prepend[Nest[Flatten[Partition[#, 2] /. {{2, 2} -> {2, 2, 1, 1}, {2, 1} -> {2, 2, 1}, {1, 2} -> {2, 1, 1}, {1, 1} -> {2, 1}}] &, {2, 2}, n], 1]; ans = Join[{s[[p[0] = pos = seqPosition2[s, #] - 1]]}, #] &[{s[[1]]}]; cfs = Table[s = Drop[s, pos - 1]; ans = Join[{s[[p[n] = pos = seqPosition2[s, #] - 1]]}, #] &[ans], {n, z}]; rcf = Last[Map[Reverse, cfs]]  (* A245936 *) CROSSREFS Cf. A000002, A245937, A245920. Sequence in context: A221646 A249161 A025142 * A199596 A074265 A254688 Adjacent sequences:  A245933 A245934 A245935 * A245937 A245938 A245939 KEYWORD nonn AUTHOR Clark Kimberling and Peter J. C. Moses, Aug 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 01:55 EDT 2018. Contains 300953 sequences. (Running on oeis4.)