%I #11 Nov 05 2018 03:05:00
%S 61,193,549,1629,4753,13961,40901,119953,351649,1031057,3022933,
%T 8863117,25986061,76189749,223384017,654949861,1920277409,5630150189,
%U 16507298221,48398515249,141901859897,416048676085,1219832512513,3576483842281
%N Number of length n+2 0..4 arrays with some pair in every consecutive three terms totalling exactly 4.
%H R. H. Hardin, <a href="/A245865/b245865.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) + a(n-2) - a(n-3) - 5*a(n-4) - 8*a(n-5) + 3*a(n-6).
%F Empirical g.f.: x*(61 + 10*x - 91*x^2 - 150*x^3 - 185*x^4 + 75*x^5) / (1 - 3*x - x^2 + x^3 + 5*x^4 + 8*x^5 - 3*x^6). - _Colin Barker_, Nov 04 2018
%e Some solutions for n=8:
%e 1 1 0 4 1 3 2 0 0 0 1 4 2 2 1 3
%e 2 4 1 1 0 0 2 1 2 4 0 0 3 2 3 0
%e 3 0 3 3 4 4 0 3 2 4 3 1 1 0 1 4
%e 2 4 1 0 3 0 4 1 1 0 1 4 2 4 2 2
%e 2 4 1 4 1 3 2 2 2 4 1 0 3 0 2 2
%e 0 0 3 0 3 1 2 2 3 2 3 3 1 1 2 0
%e 2 4 3 4 2 0 0 4 1 2 4 1 0 3 2 4
%e 2 3 1 0 1 3 2 0 3 1 0 4 4 1 4 3
%e 0 1 3 4 2 1 2 2 4 3 1 0 0 4 0 0
%e 2 4 1 3 2 3 4 2 1 3 4 1 1 0 4 1
%Y Column 4 of A245869.
%K nonn
%O 1,1
%A _R. H. Hardin_, Aug 04 2014
|