The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245831 The Szeged index of the coronene/circumcoronene benzenoid H_k (see Fig. 5 of the Gutman & Klavzar reference or Fig. 5.7 of the Diudea et al. reference). 0
 54, 3438, 39258, 220824, 842850, 2517534, 6349518, 14149728, 28688094, 53985150, 95642514, 161212248, 260605098, 406537614, 615018150, 905871744, 1303303878, 1836503118, 2540282634, 3455760600, 4631079474, 6122164158, 7993519038, 10319063904, 13183008750 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES M. V. Diudea, I. Gutman, J. Lorentz, Molecular Topology, Nova Science Publishers, Huntington, NY (2001). LINKS Table of n, a(n) for n=1..25. I. Gutman, S. Klavzar, An algorithm for the calculation of the Szeged index of benzenoid hydrocarbons, preprint. I. Gutman, S. Klavzar, An algorithm for the calculation of the Szeged index of benzenoid hydrocarbons, J. Chem. Inf. Comput. Sci., 35, 1995, 1011-1014. I. Gutman, P. V. Khadikar, T. Khaddar, Wiener and Szeged indices of benzenoid hydrocarbons containing a linear polyacene fragment, Commun. Math. Chem. (MATCH), 35, 1997, 105-116. FORMULA a(k) = 3(36k^6-k^4+k^2)/2. G.f.: 18z(1+z)(3+167z+740z^2+167z^3+3z^4)/(1-z)^7. EXAMPLE a(1)=54; indeed, the benzenoid consists of 1 hexagon and each of its six edges contributes 3*3 towards the Szeged index; 6*9 = 54. MAPLE a := proc (n) options operator, arrow: 54*n^6-(3/2)*n^4+(3/2)*n^2 end proc: seq(a(n), n = 1 .. 30); CROSSREFS Sequence in context: A309422 A212705 A046199 * A291071 A254620 A299862 Adjacent sequences: A245828 A245829 A245830 * A245832 A245833 A245834 KEYWORD nonn AUTHOR Emeric Deutsch, Aug 07 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 15:14 EDT 2023. Contains 363042 sequences. (Running on oeis4.)