%I
%S 0,1,3,3,6,15,16,12,10,45,110,195,210,120,20,15,105,435,1320,2841,
%T 4410,4845,3360,1350,300,30,21,210,1295,5880,19887,51954,106785,
%U 171360,208565,186375,120855,56805,19110,4410,630,42
%N T(n,k) is the number of labeled graphs of n vertices and k edges that have endpoints, where an endpoint is a vertex with degree 1.
%C The length of the rows are 1,1,2,4,7,11,16,22,...: (1+(n1)*(n2)/2) = A152947(n).
%C T(n,k) = 0 if k > (n1)*(n2)/2 + 1.
%C Let j = (n1)*(n2)/2. For i >=0, n >= 4+i, T(n,ji+1) = n*(n1)*binomial(j,i).
%C For k <= 3, T(n,k) is equal to the number of labeled bipartite graphs with n vertices and k edges. In particular, T(n,1) = A000217(n1), T(n,2) = A050534(n) and T(n,3) = A053526(n).
%H C. W. Wu, <a href="http://arxiv.org/abs/1407.5663">Graphs whose normalized Laplacian matrices are separable as density matrices in quantum mechanics</a>, arXiv:1407.5663 [quantph], 2014.
%e Triangle starts:
%e ..0
%e ..1
%e ..3......3
%e ..6.....15.....16.....12
%e .10.....45....110....195....210....120.....20
%e .15....105....435...1320...2841...4410...4845...3360...1350....300.....30
%e ...
%Y Sum of nth row is A245797(n).
%K nonn,tabf
%O 1,3
%A _Chai Wah Wu_, Aug 01 2014
