OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.6 Fransén-Robinson Constant, p. 263.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Peter Bala, Borel summation of a family of divergent series
M. L. Glasser, A note on Beukers's and related integrals, Amer. Math. Monthly 126(4) (2019), 361-363.
Math Overflow, Value of divergent sum Sum_{n >= 0} (-1)^n*n^n.
G. N. Watson, Theorems stated by Ramanujan (VIII): Theorems on Divergent Series, Journal of the London Mathematical Society, Volume s1-4, Issue 2, April 1929, Pages 82-86.
FORMULA
From Peter Bala, Nov 10 2019: (Start)
Equals Integral_{x = 1..oo} x*(1 + log(x))/x^x dx - 1.
Equals Integral_{x = 1..oo} x*(1 - log^2(x))/x^x dx.
Conjecturally, equals 1 - Integral_{x = 1..oo, y = 1..oo} 1/(x*y)^(x*y) dx dy. [added Dec 21 2022: follows from Glasser's Theorem 1.] (End)
From Peter Bala, Dec 21 2022: (Start)
Equals 1 - Integral_{x = 1..oo} log(x)/x^x dx (since d/d(1/x^x) = - (1 + log(x)/x^x).
Equals the Borel sum of the divergent series 1 - 1^1 + 2^2 - 3^3 + 4^4 - .... See Watson, Section 5. Compare with the convergent series 1/1^1 - 1/2^2 + 1/3^3 - 1/4^4 + ... = Integral_{x = 0..1} x^x dx. See A083648.
More generally, for nonnegative integers a and b, the divergent series Sum_{n >= 0} (-1)^n*(a*n + b)^n is Borel summable to Integral_{x = 1..oo} x^(a-b-1)/x^(x^a) dx. (End)
EXAMPLE
0.704169960437474460011442107857123810587597268693456555478297615846...
MATHEMATICA
NIntegrate[1/x^x, {x, 1, Infinity}, WorkingPrecision -> 104] // RealDigits // First
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Jul 28 2014
STATUS
approved