Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jun 14 2024 13:08:43
%S 2,3,5,7,11,13,17,19,23,29,31,37,41,43,59,61,67,73,79,83,89,113,127,
%T 131,137,139,157,163,167,173,181,191,193,211,223,227,229,233,239,263,
%U 269,271,277,281,293,311,313,337,359,367,373,379,383,389,419,421,431,433
%N Primes p such that p and p^2 lack the zero digit in their decimal expansions.
%C Subsequence of A052042. First terms that are in A052042 but not here: 107, 109, 307, 409.
%H Chai Wah Wu, <a href="/A245576/b245576.txt">Table of n, a(n) for n = 1..3001</a>
%t fQ[n_] := Min[IntegerDigits[n]] > 0; Select[Prime @ Range @ 90, fQ[#] && fQ[#^2] &]
%t Select[Prime[Range[100]],FreeQ[{IntegerDigits[#],IntegerDigits[#^2]},0]&] (* _Harvey P. Dale_, Jun 14 2024 *)
%o (PARI) (vmd (n) = vecmin (digits (n))); p = 2;for (k = 1, 300, if (vmd (p) > 0 && vmd (p^2) > 0, print1 (p ", " )); p = nextprime (1 + p))
%o (Python)
%o from sympy import prime
%o A245576_list = [p for p in (prime(i) for i in range(1,10**4)) if not(str(p).count('0') or str(p**2).count('0'))]
%o # _Chai Wah Wu_, Dec 27 2014
%Y Cf. A052042, A052043.
%K base,nonn
%O 1,1
%A _Zak Seidov_, Dec 25 2014