login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245438
a(n) = the number of ways in which n is equal to the sum of digits > 0 taken from numbers <= n.
2
1, 1, 2, 2, 3, 4, 5, 6, 8, 17, 53, 158, 450, 1224, 3195, 8036, 19585, 46549, 108541, 219677, 664149, 1891075, 5091680, 13004347, 31632641, 73745789, 166055768, 364027232, 782374631, 1462836178, 4198493416, 11171538552, 27755958012
OFFSET
1,3
COMMENTS
Let the range (1,n) in base 10 be represented in the form (1.A,n.A) = (1.A, 2.A, 3.A...n.A), where digit A = 10 in bases >= 11. Let samplesum(d(i),i=1..n) sum single digits d(i) sampled from each member of (1.A,n.A). The list above is the number of ways in which n = samplesum(d(i),i=1..n) when 0 < d(i) < A, for all i. Because d(i) is not permitted to equal 0, sums like these are not counted separately:
10 = 1 + 2 + 3 + 4.
10 = 1 + 2 + 3 + 4 + 0 (of 10).
11 = 1 + 2 + 3 + 4 + 0 (of 10) + 1 (of 11).
11 = 1 + 2 + 3 + 4 + 1 (of 11).
12 = 1 + 2 + 3 + 6.
12 = 1 + 2 + 3 + 6 + 0 (of 10).
However, these two sums are counted separately:
11 = 1 + 2 + 3 + 4 + 1 (first digit of 11).
11 = 1 + 2 + 3 + 4 + 1 (second digit of 11).
EXAMPLE
1 = 1 (sum=1).
2 = 2 (s=1).
3 = 1 + 2; 3 (s=2).
4 = 1 + 3; 4 (s=2).
5 = 2 + 3; 1 + 4; 5 (s=3).
6 = 1 + 2 + 3; 2 + 4; 1 + 5; 6 (s=4).
7 = 1 + 2 + 4; 3 + 4; 2 + 5; 1 + 6; 7 (s=5).
8 = 1 + 3 + 4; 1 + 2 + 5; 3 + 5; 2 + 6; 1 + 7; 8 (s=6).
9 = 2 + 3 + 4; 1 + 3 + 5; 4 + 5; 1 + 2 + 6; 3 + 6; 2 + 7; 1 + 8; 9 (s=8).
10 = 1 + 2 + 3 + 4; 2 + 3 + 5; 1 + 4 + 5; 1 + 3 + 6; 4 + 6; 1 + 2 + 7; 3 + 7; 2 + 8; 1 + 9; 2 + 3 + 4 + 1 (of 10); 1 + 3 + 5 + 1 (of 10); 4 + 5 + 1 (of 10); 1 + 2 + 6 + 1 (of 10); 3 + 6 + 1 (of 10); 2 + 7 + 1 (of 10); 1 + 8 + 1 (of 10); 9 + 1 (of 10) (s=17).
11 = 3 + 4 + 5 + 1 (of 10).
12 = 1 + 2 + 5 + 1 (of 10) + 1 (of 11) + 2 (of 12).
13 = 1 + 2 + 6 + 1 (of 11) + 2 (of 12).
14 = 3 + 4 + 1 (of 10) + 1 (of 11) + 2 (of 12) + 3 (of 13).
15 = 3 + 5 + 1 (of 10) + 2 (of 12) + 3 (of 13) + 1 (of 14).
PROG
(PARI) /* To include 0 in sums, change "dn[i]>0" to "dn[i]>=0" */
{ nmx=20; b=10; d = vector(nmx+1); s = vector(nmx+1); for(n=1, nmx+1, dn=digits(n, b); nn=0; for(i=1, #dn, if(dn[i]>0, nn=nn*b+dn[i])); d[n]=nn; ); for(n=1, nmx, si=1; c=0; until(si>n, nn=0; for(i=1, si, if(s[i]>0, nn+=(d[i]\b^(s[i]-1))%b); if(nn>n, i=si)); if(nn==n, c++); incs(); ); s[si]=0; print1(c, ", ")); break; }
{incs() = s[1]++; i=1; while(d[i]\b^(s[i]-1)==0, s[i]=0; i++; s[i]++; ); if(i>si, si=i); } \\ Anthony Sand, Aug 15 2014
A245438(n) = my(X = 'x + O('x^(n+1))); polcoef( prod(i=1, n, 1 + vecsum(apply(t->(t>0)*X^t, digits(i))) ), n); \\ Max Alekseyev, Sep 04 2023
CROSSREFS
Sequence in context: A091585 A032228 A091583 * A245439 A132326 A351595
KEYWORD
nonn,base
AUTHOR
Anthony Sand, Jul 22 2014
EXTENSIONS
More terms from Max Alekseyev, Sep 04 2023
STATUS
approved