login
Decimal expansion of inf{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A001951, else f(n,x) = 1/x.
11

%I #5 Jul 17 2014 22:12:15

%S 2,9,0,9,9,5,0,2,7,0,8,6,5,9,0,6,3,0,7,4,0,5,1,1,6,6,8,1,8,3,7,7,7,6,

%T 5,1,3,8,5,4,3,2,0,1,6,1,0,9,6,3,8,8,9,9,6,6,2,3,6,0,5,9,9,9,3,0,5,6,

%U 4,4,0,8,2,9,8,2,1,1,8,9,6,3,0,3,3,1

%N Decimal expansion of inf{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A001951, else f(n,x) = 1/x.

%C See Comments at A245215.

%H Clark Kimberling, <a href="/A245217/b245217.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n)*sup{f(n,1)} = 1.

%e c = 0.29099502708659063074051166818377765138543201... The first 12 numbers f(n,1) comprise S(12) = {1, 2, 3, 1/3, 4/3, 7/3, 3/7, 10/7, 17/7, 24/7, 7/24, 31/24}; min(S(12)) = 7/24 = 0.29166...

%t tmpRec = $RecursionLimit; $RecursionLimit = Infinity; u[x_] := u[x] = x + 1; d[x_] := d[x] = 1/x; r = Sqrt[2]; w = Table[Floor[k*r], {k, 2000}]; s[1] = 1; s[n_] := s[n] = If[MemberQ[w, n - 1], u[s[n - 1]], d[s[n - 1]]]; $RecursionLimit = tmpRec;

%t m = Min[N[Table[s[n], {n, 1, 4000}], 300]]

%t t = RealDigits[m] (* A245217 *)

%t (* _Peter J. C. Moses_, Jul 04 2014 *)

%Y Cf. A226080 (infinite Fibonacci tree), A245215, A245218, A245220, A245223.

%K nonn,cons,easy

%O 1,1

%A _Clark Kimberling_, Jul 13 2014