The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245216 Decimal expansion of sup{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A000201, else f(n,x) = 1/x. 3
2, 7, 2, 9, 9, 6, 7, 7, 4, 1, 5, 9, 9, 8, 0, 2, 4, 8, 7, 8, 9, 1, 6, 4, 6, 7, 7, 4, 8, 7, 5, 9, 0, 7, 5, 2, 1, 1, 4, 3, 7, 8, 4, 1, 1, 3, 5, 3, 7, 0, 3, 4, 6, 2, 5, 9, 8, 6, 9, 5, 2, 7, 2, 4, 5, 2, 9, 0, 0, 6, 8, 8, 6, 4, 9, 3, 2, 6, 4, 2, 8, 6, 8, 0, 0, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Equivalently, f(n,x) = 1/(f(n-1,x) if n is in A001950 (upper Wythoff sequence, given by w(n) = floor[tau*n], where tau = (1 + sqrt(5))/2, the golden ratio) and f(n,x) = f(n-1) + 1 otherwise. Let c = sup{f(n,1)}. The continued fraction of c is [2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, ...], which appears to be identical to the Hofstadter eta-sequence at A006340. See Comments at A245215.
LINKS
FORMULA
inf{f(n,1)}*(2 + a(n)) = 1.
EXAMPLE
c = 2.7299677415998024878916467748759075211... The first 12 numbers f(n,1) comprise S(12) = {1, 2, 1/2, 3/2, 5/2, 2/5, 7/5, 5/7, 12/7, 19/7, 7/19, 26/19}; max(S(12)) = 19/7 = 2.71429...
MATHEMATICA
tmpRec = $RecursionLimit; $RecursionLimit = Infinity; u[x_] := u[x] = x + 1; d[x_] := d[x] = 1/x; r = GoldenRatio; w = Table[Floor[k*r], {k, 2000}]; s[1] = 1; s[n_] := s[n] = If[MemberQ[w, n - 1], u[s[n - 1]], d[s[n - 1]]]; $RecursionLimit = tmpRec;
m = Max[N[Table[s[n], {n, 1, 4000}], 300]]
RealDigits[m] (* A245216 *)
(* Peter J. C. Moses, Jul 04 2014 *)
CROSSREFS
Cf. A226080 (infinite Fibonacci tree), A006340, A245215, A245217, A245220, A245223.
Sequence in context: A197133 A178206 A245976 * A223149 A222853 A222654
KEYWORD
nonn,cons,easy
AUTHOR
Clark Kimberling, Jul 13 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 01:07 EDT 2024. Contains 372806 sequences. (Running on oeis4.)