login
Decimal expansion of the positive solution of G(x)=x, with x>1, G being the Barnes function.
0

%I #6 Jul 11 2014 08:28:07

%S 4,5,4,5,5,2,1,1,1,2,7,1,7,1,2,3,3,4,7,5,2,4,2,5,6,0,4,1,7,4,5,4,3,0,

%T 1,2,1,9,3,9,8,1,9,4,3,0,2,3,5,4,7,6,2,5,9,8,2,6,2,3,3,9,2,3,5,1,6,4,

%U 3,8,1,2,7,1,8,9,4,8,1,1,3,5,0,8,6,3,4,5,9,8,7,8,6,0,4,7,0,5,8,7,3,6,7

%N Decimal expansion of the positive solution of G(x)=x, with x>1, G being the Barnes function.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Barnes_G-function">Barnes G-function</a>

%e 4.545521112717123347524256041745430121939819430235476259826233923516438127...

%t digits = 103; x0 = x /. FindRoot[BarnesG[x] == x, {x, 5}, WorkingPrecision -> digits + 10]; RealDigits[x0, 10, digits] // First

%Y Cf. A218802 (gamma(x)=x).

%K nonn,cons,easy

%O 1,1

%A _Jean-François Alcover_, Jul 11 2014