login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p minus its digit sum is a perfect cube.
2

%I #30 Jul 18 2014 08:29:47

%S 2,3,5,7,31,37,223,227,229,743,1741,1747,3391,5851,5857,9281,9283,

%T 13841,19709,27011,27017,35963,35969,46681,46687,59341,74101,91141,

%U 110603,110609,132679,373273,474581,474583,729023,804383,1061227,1259743,1259749,1481573,2000393

%N Primes p such that p minus its digit sum is a perfect cube.

%H K. D. Bajpai and Jens Kruse Andersen, <a href="/A245064/b245064.txt">Table of n, a(n) for n = 1..10000</a> (first 274 terms from K. D. Bajpai)

%e 37 is in the sequence because it is prime. Also, 37 - (3 + 7 ) = 27 = 3^3: a perfect cube.

%e 743 is in the sequence because it is prime. Also, 743 - (7 + 4 + 3) = 729 = 9^3: a perfect cube.

%p dmax:= 9; # to get all entries < 10^dmax

%p cmax:= floor(10^(dmax/3));

%p count:= 0;

%p for m from 0 to cmax do

%p for p from m^3 to m^3 + 9*dmax do

%p if p - convert(convert(p,base,10),`+`) = m^3 and isprime(p) then

%p count:= count+1;

%p A[count]:= p;

%p fi

%p od

%p od;

%p {seq(A[i],i=1..count)}; # _Robert Israel_, Jul 15 2014

%t Select[Prime[Range[200000]], IntegerQ[CubeRoot[# - Apply[Plus, IntegerDigits[#]]]] &]

%o (PARI)

%o digsum(n) = my(d=eval(Vec(Str(n)))); sum(i=1, #d, d[i])

%o s=[]; forprime(p=2, 2002000, if(ispower(p-digsum(p), 3), s=concat(s, p))); s \\ _Colin Barker_, Jul 15 2014

%Y Cf. A000578, A048519, A107288.

%K nonn,base

%O 1,1

%A _K. D. Bajpai_, Jul 11 2014