%I
%S 1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,1,2,1,2,1,2,3,3,2,4,2,3,3,6,3,6,4,6,4,
%T 6,7,9,8,9,11,14,11,19,17,20,21,25,24,31,32,36,37,44,40,52,52,65,58,
%U 70,69,83,78,93,99,111,104,126,124,142,141,177,167,201
%N Number of partitions of n where the minimal multiplicity of any part is 7.
%H Joerg Arndt and Alois P. Heinz, <a href="/A245038/b245038.txt">Table of n, a(n) for n = 7..1000</a>
%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
%p end:
%p a:= n-> b(n$2, 7) -b(n$2, 8):
%p seq(a(n), n=7..100);
%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, k], {j, Max[1, k], n/i}]]];
%t a[n_] := b[n, n, 7] - b[n, n, 8];
%t Table[a[n], {n, 7, 100}] (* _Jean-François Alcover_, May 01 2018, translated from Maple *)
%Y Column k=7 of A243978.
%K nonn
%O 7,15
%A _Joerg Arndt_ and _Alois P. Heinz_, Jul 10 2014
|