|
|
A244949
|
|
Least number k > n such that k^64 + n^64 is prime.
|
|
1
|
|
|
102, 37, 32, 39, 118, 13, 16, 11, 154, 41, 94, 29, 158, 17, 64, 291, 70, 107, 66, 63, 58, 87, 38, 397, 282, 69, 32, 129, 142, 67, 210, 87, 200, 227, 82, 55, 70, 137, 388, 541, 140, 103, 64, 167, 286, 71, 60, 593, 262, 459, 62, 69, 92, 91, 128, 81, 98, 149, 164, 107, 192, 103
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) = n+1 iff n is in A174157.
|
|
LINKS
|
Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
8^64 + 11^64 = 4457915690803004131256192897205630962697827851093882159977969339137 is prime. Since 8^64 + 10^64 and 8^64 + 9^64 are both composite, a(8) = 11.
|
|
PROG
|
(Python)
import sympy
from sympy import isprime
def a(n):
..for k in range(n+1, 10**4):
....if isprime(k**64+n**64):
......return k
n = 1
while n < 100:
..print(a(n), end=', ')
..n += 1
(PARI) a(n)=for(k=n+1, 10^4, if(isprime(k^64+n^64), return(k)))
n=1; while(n<100, print1(a(n), ", "); n++)
|
|
CROSSREFS
|
Cf. A158979, A089489, A242556.
Sequence in context: A325776 A325775 A204749 * A266017 A144469 A009101
Adjacent sequences: A244946 A244947 A244948 * A244950 A244951 A244952
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Derek Orr, Jul 08 2014
|
|
STATUS
|
approved
|
|
|
|