The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A244062 G.f. satisfies: A(x) = Sum_{n>=0} x^n * (2*A(x)^(2*n) - A(x)^n)). 1

%I

%S 1,1,4,21,124,786,5228,36005,254568,1837214,13479308,100239418,

%T 753880440,5724153044,43820345784,337850230061,2621033435856,

%U 20445810352950,160271222750348,1261838520251886,9973780991950168,79115475268744044,629605388017281768,5025263773704414050

%N G.f. satisfies: A(x) = Sum_{n>=0} x^n * (2*A(x)^(2*n) - A(x)^n)).

%H Vaclav Kotesovec, <a href="/A244062/b244062.txt">Table of n, a(n) for n = 0..300</a>

%F G.f. satisfies: A(x) = 2/(1 - x*A(x)^2) - 1/(1 - x*A(x)).

%F G.f. satisfies: A(x) = G( x*(1-x*A(x)) / (1-2*x*A(x)) ) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

%F G.f.: A(x) = x/Series_Reversion(x*F(x)) where A(x) = F(x*A(x)) and F(x) = (1-2*x - sqrt((1-2*x)*(1-6*x+4*x^2)))/(2*x*(1-x)) is the g.f. of A059278.

%F Recurrence: n*(n+1)*(2*n+1)*(2015*n^7 - 27625*n^6 + 141203*n^5 - 313033*n^4 + 208928*n^3 + 209582*n^2 - 249690*n - 1260)*a(n) = 2*n*(10075*n^9 - 138125*n^8 + 689505*n^7 - 1342581*n^6 - 90999*n^5 + 3620601*n^4 - 3189085*n^3 - 1422829*n^2 + 2448474*n - 629856)*a(n-1) + 4*(28210*n^10 - 429065*n^9 + 2551767*n^8 - 7248183*n^7 + 8762631*n^6 + 1255293*n^5 - 12916972*n^4 + 8733443*n^3 + 1573824*n^2 - 2841228*n + 619920)*a(n-2) + 12*(12090*n^10 - 202020*n^9 + 1404463*n^8 - 5288640*n^7 + 11807054*n^6 - 15771984*n^5 + 9953477*n^4 + 5954400*n^3 - 18326984*n^2 + 13162824*n - 2348640)*a(n-3) - 8*(n-3)*(88660*n^9 - 1348490*n^8 + 7652292*n^7 - 18093912*n^6 + 5534031*n^5 + 47300904*n^4 - 60179995*n^3 - 14703742*n^2 + 49764312*n - 13965840)*a(n-4) + 24*(n-4)*(3*n - 14)*(3*n - 13)*(2015*n^7 - 13520*n^6 + 17768*n^5 + 49132*n^4 - 113149*n^3 - 1862*n^2 + 98496*n - 29880)*a(n-5). - _Vaclav Kotesovec_, Jun 19 2014

%F a(n) ~ sqrt(s*(1/r - 1/(1-r*s)^2) / (2*(1+3*r*s^2)/(1-r*s^2)^3 - r/(1-r*s)^3)) / (2*sqrt(2*Pi) * n^(3/2) * r^n), where r = 0.1173880603216979159912271683495821643016169... and s = 1.4338257350727901441223535965394946191082412... are roots of the system of equations 1/(r*s-1) + 2/(1-r*s^2) = s, 4*r*s/(r*s^2-1)^2 = 1+r/(r*s-1)^2. - _Vaclav Kotesovec_, Jun 19 2014

%e G.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 124*x^4 + 786*x^5 + 5228*x^6 +...

%e where

%e A(x) = 1 + x*(2*A(x)^2 - A(x)) + x^2*(2*A(x)^4 - A(x)^2) + x^3*(2*A(x)^6 - A(x)^3) + x^4*(2*A(x)^8 - A(x)^4) + x^5*(2*A(x)^10 - A(x)^5) +...

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m*(2*A^(2*m) - A^m)+x*O(x^n)));polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=2/(1-x*A^2 +x*O(x^n)) - 1/(1-x*A +x*O(x^n)));polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%o (PARI) {a(n)=local(G=1+x,A=1+x);for(i=1,n,G=1+x*G^3+x*O(x^n));for(i=1,n,A=subst(G,x,x*(1-x*A)/(1-2*x*A)) );polcoeff(A,n)}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A059278, A001764.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jun 18 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 16 23:53 EDT 2021. Contains 347477 sequences. (Running on oeis4.)