A continued fraction expansion for the constant 1 - log(2)

Peter Bala, Mar 052024

Proposition. The constant 1 - log(2) has the following continued fraction expansion

$$
1 /(4-4 /(7-12 /(10-\ldots-2 * n *(n-1) /((3 * n+1)-\ldots)))) .
$$

Sketchproof. We start with the series expansion

$$
1-\log (2)=\operatorname{Sum}_{-}\{k>=1\} 1 /\left(k^{*}(k+1) * 2^{\wedge} k\right),
$$

which can be verified using a CAS.

Define a a pair of integer sequences

$$
\begin{aligned}
& A(n)=2^{\wedge} n \star(n+1)!* \operatorname{Sum}_{-}\{k=1 \ldots n\} 1 /\left(k *(k+1) * 2^{\wedge} k\right) \text { and } \\
& B(n)=2^{\wedge} n *(n+1)!.
\end{aligned}
$$

The first few values are

n	1	2	3	4
---	-	-	-	-
A (n)	1	7	58	586
B (n)	4	24	192	1920

It is straightforward to check that both sequences $\{A(n)\}$ and $\{B(n)\}$ satisfy the same second-order recurrence

$$
u(n)=(3 * n+1) * u(n-1)-2 * n *(n-1) * u(n-2) .
$$

Hence, by the fundamental recurrence formulas for the numerators and denominators of a continued fraction, we obtain, for $n>=2$, the finite continued fraction representation

$$
\begin{aligned}
& A(n) / B(n)=\operatorname{Sum}_{-}\{k=1 \ldots n\} 1 /\left(k^{\star}(k+1) * 2^{\wedge} k\right) \\
= & 1 /(4-4 /(7-12 /(10-\ldots-2 * n *(n-1) /((3 * n+1))))) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \operatorname{Limit}_{Z}\{n \rightarrow O O\} A(n) / B(n)=\operatorname{Sum}_{-}\{k>=1\} 1 /\left(k *(k+1) * 2^{\wedge} k\right) \\
& =1-\log (2) \\
& =1 /(4-4 /(7-12 /(10-\ldots-2 * n *(n-1) /((3 * n+1)-\ldots)))) .
\end{aligned}
$$

Remark. The above continued fraction representation for the constant 1 - log(2) is equivalent to the continued fraction
$1 /(1-\log (2))=4-8 /\left(14-72 /\left(30-\ldots-2{ }^{n} n^{\wedge} 2 *(n+1) \wedge 2 /\left(\left(3 *^{*}{ }^{\wedge} 2\right.\right.\right.\right.$ $+7{ }^{(n+4)}$ - ...)))
conjectured by the Ramanujan machine.

