login
Numbers m such that 7 divides A000041(m).
2

%I #13 Sep 08 2022 08:46:08

%S 5,10,11,12,16,18,19,24,26,27,33,37,39,40,41,47,48,52,53,54,55,61,68,

%T 75,76,82,83,89,96,97,103,110,111,117,124,125,131,138,140,145,147,152,

%U 159,166,170,173,177,180,187,191,194,201,208,213,215,222,225,229,232

%N Numbers m such that 7 divides A000041(m).

%H Bruno Berselli, <a href="/A243936/b243936.txt">Table of n, a(n) for n = 1..1000</a>

%t Select[Range[250], Mod[PartitionsP[#], 7] == 0 &]

%o (Sage)

%o # From _Peter Luschny_ in A000041

%o @CachedFunction

%o def A000041(n):

%o if n == 0: return 1

%o S = 0; J = n-1; k = 2

%o while 0 <= J:

%o T = A000041(J)

%o S = S+T if is_odd(k//2) else S-T

%o J -= k if is_odd(k) else k//2

%o k += 1

%o return S

%o [n for n in (0..250) if mod(A000041(n),7) == 0]

%o (Magma) [n: n in [1..250] | IsZero(NumberOfPartitions(n) mod 7)];

%o (PARI) is(n)=numbpart(n)%7==0 \\ _Charles R Greathouse IV_, Apr 08 2015

%Y Numbers m such that k divides A000041(m), where k is prime: A001560 (k=2), A083214 (k=3), A243935 (k=5), this sequence (k=7), A027827 (k=11), A071750 (k=13). For k composite: A237278 (k=4), A035700 (k=12).

%K nonn,easy

%O 1,1

%A _Bruno Berselli_, Jun 15 2014