The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243923 Row sums of triangle A243920. 3

%I #9 Jun 15 2014 22:39:32

%S 0,1,4,12,57,469,5409,77321,1304086,25263208,551790014,13398776948,

%T 357740951660,10409057421898,327640162774856,11087710302096702,

%U 401290657576717001,15462394004585328685,631795378164538352085,27280160237622374011469,1240933576265292837746859

%N Row sums of triangle A243920.

%C Triangle T = A243920 is generated by sums of matrix powers of itself such that:

%C T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = 2*n+1 and T(n,n)=0 for n>=0.

%C Also, column k of triangle T = A243920 obeys the rule:

%C (2*k+1)*x^(k+1) = Sum_{n>=0} T(n,k) * x^n * (1-x)^(n-k) / Product_{j=k+1..n-1} (1+2*j*x).

%e Equals rows sums of triangle T = A243920, which begins:

%e 0;

%e 1, 0;

%e 1, 3, 0;

%e 4, 3, 5, 0;

%e 27, 18, 5, 7, 0;

%e 254, 159, 40, 7, 9, 0;

%e 3048, 1836, 435, 70, 9, 11, 0;

%e 44328, 26028, 5930, 903, 108, 11, 13, 0; ...

%e such that T as an infinite triangular matrix satisfies:

%e [I - T]^(-1) = Sum_{n>=0} T^n and equals T shifted up 1 row

%e (with all '1's replacing the main diagonal):

%e 1;

%e 1, 1;

%e 4, 3, 1;

%e 27, 18, 5, 1;

%e 254, 159, 40, 7, 1;

%e 3048, 1836, 435, 70, 9, 1;

%e 44328, 26028, 5930, 903, 108, 11, 1; ...

%o (PARI) /* Get row sums using the g.f. for columns in triangle A243920: */

%o {A243920(n, k)=if(n<k+1, 0, polcoeff((2*k+1)*x^(k+1)-sum(m=k+1, n-1, A243920(m, k)*x^m*(1-x)^(m-k)/prod(j=k+1, m-1, 1+2*j*x+x*O(x^n))), n))}

%o {for(n=0, 20, print1(sum(k=0, n, A243920(n, k)), ", "))}

%Y Cf. A243920, A243921, A243922, A208678.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jun 15 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 03:30 EDT 2024. Contains 372957 sequences. (Running on oeis4.)