login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of a constant related to the asymptotic evaluation of the Lebesgue constants L_n.
2

%I #5 Jun 02 2014 10:44:47

%S 2,4,4,1,3,2,3,8,1,3,6,9,4,8,3,4,5,7,4,4,6,2,0,7,8,5,1,2,6,1,4,9,1,2,

%T 3,9,0,8,0,5,0,7,8,7,3,8,3,2,7,7,3,1,4,3,5,0,5,3,7,1,3,2,5,3,8,9,9,9,

%U 2,7,3,0,0,0,6,1,2,2,7,1,0,9,9,0,5,1,1,3,4,1,6,8,7,0,9,3,7,6,4,1

%N Decimal expansion of a constant related to the asymptotic evaluation of the Lebesgue constants L_n.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.2 Lebesgue constants, p. 251.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/LebesgueConstants.html">Lebesgue constants</a>

%F 2*(sum_(k>0) log(k)/(4*k^2-1))- psi(1/2), where psi is the digamma function.

%F Equals Pi^2/4*A243277.

%e 2.441323813694834574462078512614912390805...

%t digits = 100; m0 = 50; dm = 50; Clear[f]; f[m_] := f[m] = 8/Pi^2*Sum[-Zeta'[2*k]/2^(2*k), {k, 1, m}] - 4/Pi^2*PolyGamma[1/2]; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits + 10] != RealDigits[f[m - dm], 10, digits + 10], Print["m = ", m]; m = m + dm]; RealDigits[f[m], 10, digits] // First

%Y Cf. A226654, A226655, A226656, A243277.

%K nonn,cons

%O 1,1

%A _Jean-François Alcover_, Jun 02 2014