|
|
A243150
|
|
Least number k > 0 such that 2^k contains an n-digit long substring of the infinite string "0123456789012345678901234567890123456....".
|
|
1
|
|
|
1, 7, 28, 106, 391, 992, 1178, 7255, 15975, 67143, 333212, 333212, 1641257
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
By A238448, a(10) <= 244178.
|
|
LINKS
|
Table of n, a(n) for n=1..13.
|
|
EXAMPLE
|
2^7 = 128 contains the 2-digit substring "12". Thus a(2) = 7.
|
|
PROG
|
(Python)
def a(n):
..for k in range(1, 10**5):
....for i in range(10):
......s = ''
......for j in range(i, i+n):
........dig=j%10
........s+=str(dig)
......if str(2**k).find(s) > -1:
........return k
n=1
while n < 10:
..print(a(n))
..n+=1
|
|
CROSSREFS
|
Cf. A238448.
Sequence in context: A000416 A000417 A200762 * A344206 A026642 A200467
Adjacent sequences: A243147 A243148 A243149 * A243151 A243152 A243153
|
|
KEYWORD
|
nonn,more,hard,base
|
|
AUTHOR
|
Derek Orr, May 31 2014
|
|
EXTENSIONS
|
a(10)-a(13) from Hiroaki Yamanouchi, Sep 26 2014
|
|
STATUS
|
approved
|
|
|
|